998 resultados para edema pulmonar
Resumo:
The aim of this study was to evaluate the arterial and venous blood flow in women who underwent upper limb axillary dissection surgery for the treatment of breast cancer. Sixty women were divided into two groups: group 1 (G1)-30 women who underwent breast surgery with axillary dissection level II or III (55.6 +/- A 8.6 years); group 2 (G2)-control, 30 women with no breast cancer (57.4 +/- A 7.0 years). Blood flow profile was evaluated by a continuous wave ultrasound Doppler device (Nicolet Vascular Versalab SE(A (R))) with an 8 MHz probe. Axillary, brachial arteries and veins, arm circumference, volumes, and the ankle-brachial index (ABI) were examined. Wilcoxon test and Mann-Whitney tests were applied to analyze blood flow velocity intra-group and between G1 and G2, respectively. The G1 results showed no lymphedema and no peripheral arterial disease (ABI > 0.9). Moreover, the mean blood flow velocity of the vessels ipsilateral to the surgery was significantly higher than the contralateral ones for all vessels examined (P < 0.05). The mean velocity of blood flow of the vessels contralateral to surgery was significantly higher than the axillary artery in G2 (P < 0.05). It can be concluded that women who underwent axillary dissection due to breast cancer showed probable stenosis in the arterial and venous axillary and brachial vessels of the upper limb ipsilateral to the surgery, confirmed by the increase of blood flow velocity, and such obstruction might affect the limb contralateral to the operation site.
Resumo:
The general description of kinins refers to these peptides as molecules involved in vascular tone regulation and inflammation. Nevertheless, in the last years a series of, evidences has shown that local hormonal systems, such as the kallikrein-kinin system, may be differently regulated and are of pivotal importance to pathophysiological control. The combined interpretations of many recent studies allow us to conclude that the kallikrein-kinin system plays broader and richer roles than those classically described until recently. In this review, we report findings concerning the participation of the kallikrein-kinin system in inflammation, cancer, and in pathologies related to cardiovascular, renal and central nervous systems. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The aim of the present study was to evaluate the effect of hyperbaric oxygen therapy (HBO(2)) on the healing process of ischemic colonic anastomoses in rats Forty Wistar rats were divided into four groups control (Group I), control and HBO(2) (Group 11), ischemia (Group III), ischemia and HBO(2) (Group IV) Ischemia was achieved by clamping four centimeters of the colonic arcade On the eighth therapy day, the anastomotic region was removed for quantification of hydroxyproline and immunohistochemical determination of metalloproteinases 1 and 9 (MMP1,MMP9) The immunohistochemical studies showed significantly larger metalloproteinase-labeled areas in Group IV compared with Group III for both MMP1 and MMP9 (p<001) This finding points to a higher remodeling activity of the anastomoses in this experimental group Additionally, animals subjected to hyperbaric oxygen therapy showed both a reduction in interstitial edema and an increase in hydroxyproline concentrations [at the anastomotic site] Therefore, we conclude that HBO(2) is indeed beneficial in anastomotic ischemia
Resumo:
Background/Aims. Nuclear factor kappa B (NF kappa B) plays important role in the pathogenesis of skeletal muscle ischemia/reperfusion (I/R) injury. Caffeic acid phenyl ester (CAPE), a potent NF kappa B inhibitor, exhibits protective effects on I/R injury in some tissues. In this report, the effect of CAPE on skeletal muscle I/R injury in rats was studied. Methods. Wistar rats were submitted to sham operation, 120-min hindlimb ischemia, or 120-min hindlimb ischemia plus saline or CAPE treatment followed by 4-h reperfusion. Gastrocnemius muscle injury was evaluated by serum aminotransferase levels, muscle edema, tissue glutathione and malondialdehyde measurement, and scoring of histological damage. Apoptotic nuclei were determined by a terminal uridine deoxynucleotidyl transferase dUTP nick end labeling assay. Muscle neutrophil and mast cell accumulation were also assessed. Lipoperoxidation products and NF kappa B were evaluated by 4-hydroxynonenal and NF kappa B p65 immunohistochemistry, respectively. Results. Animals submitted to ischemia showed a marked increase in aminotransferases after reperfusion, but with lower levels in the CAPE group. Tissue glutathione levels declined gradually during ischemia to reperfusion, and were partially recovered with CAPE treatment. The histological damage score, muscle edema percentage, tissue malondialdehyde content, apoptosis index, and neutrophil and mast cell infiltration, as well as 4-hydroxynonenal and NF kappa B p65 labeling, were higher in animals submitted to I/R compared with the ischemia group. However, the CAPE treatment significantly reduced all of these alterations. Conclusions. CAPE was able to protect skeletal muscle against I/R, injury in rats. This effect may be associated with the inhibition of the NF kappa B signaling pathway and decrease of the tissue inflammatory response following skeletal muscle I/R. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Background: Hereditary angioedema is an autosomal dominant disease characterized by episodes of subcutaneous and submucosal edema. It is caused by deficiency of the C1 inhibitor protein, leading to elevated levels of bradykinin. More than 200 mutations in C1 inhibitor gene have been reported. The aim of this study was to analyze clinical features of a large family with an index case of hereditary angioedema and to determine the disease-causing mutation in this family. Methods: Family pedigree was constructed with 275 individuals distributed in five generations. One hundred and sixty-five subjects were interviewed and investigated for mutation at the C1 inhibitor gene. Subjects reporting a history of recurrent episodes of angioedema and/or abdominal pain attacks underwent evaluation for hereditary angioedema. Results: We have identified a novel mutation at the C1 inhibitor gene, c.351delC, which is a single-nucleotide deletion of a cytosine on exon 3, resulting in frameshift with premature stop codon. Sequencing analysis of the hypothetical truncated C1 inhibitor protein allowed us to conclude that, if transcription occurs, this protein has no biological activity. Twenty-eight members of the family fulfilled diagnostic criteria for hereditary angioedema and all of them presented the c.351delC mutation. Variation in clinical presentation and severity of disease was observed among these patients. One hundred and thirty-seven subjects without hereditary angioedema did not have the c.351delC mutation. Conclusion: The present study provides definitive evidence to link a novel genetic mutation to the development of hereditary angioedema in patients from a Brazilian family.
Resumo:
Neutrophil migration is responsible for tissue damage observed in inflammatory diseases and is also implicated in inflammatory nociception. The use of lectins has been demonstrated to be effective in different activities including anti-inflammatory, antimicrobial, and in cancer therapy. In this study, we addressed the potential use of a lectin from Canavalia grandiflora seeds (ConGF) to control neutrophil migration and inflammatory hypernociception. Pretreatment of the animals intravenously (15 min before) with ConGF inhibited neutrophil migration to the peritoneal cavity in a dose-dependent fashion confirmed by an inhibition of rolling and adhesion of leukocytes by intravital microscopy. Another set of experiments showed that pretreatment of the animals with ConGF inhibited the mechanical hypernociception in mice induced by the i.pl. injection of carrageenan or formalin. This anti-nociceptive effect correlated with an effective blockade of neutrophil influx, as assessed by the hind paw tissue myeloperoxidase levels. Furthermore, ConGF had important inhibitory effects on the mouse carrageenan-induced paw edema. In addition, animals treated with ConGF showed inhibition of cytokines release. In conclusion, we demonstrated that the lectin ConGF inhibits neutrophil migration and mechanical inflammatory hypernociception.
Resumo:
Kanashiro A, Pessini AC, Machado RR, Malvar DC, Aguiar FA, Soares DM, Vale ML, Souza GEP. Characterization and pharmacological evaluation of febrile response on zymosan-induced arthritis in rats. Am J Physiol Regul Integr Comp Physiol 296: R1631-R1640, 2009. First published February 25, 2009; doi:10.1152/ajpregu.90527.2008.-The present study investigated the febrile response in zymosan-induced arthritis, as well as the increase in PGE(2) concentration in the cerebrospinal fluid (CSF), along with the effects of antipyretic drugs on these responses in rats. Zymosan intra-articularly injected at the dose of 0.5 mg did not affect the body core temperature (Tc) compared with saline (control), whereas at doses of 1 and 2 mg, zymosan promoted a flattened increase in Tc and declined thereafter. The dose of 4 mg of zymosan was selected for further experiments because it elicited a marked and long-lasting Tc elevation starting at 3 1/2 h, peaking at 5 1/2 h, and remaining until 10 h. This temperature increase was preceded by a decrease in the tail skin temperature, as well as hyperalgesia and edema in the knee joint. No febrile response was observed in the following days. In addition, zymosan-induced fever was not modified by the sciatic nerve excision. Zymosan increased PGE2 concentration in the CSF but not in the plasma. Oral pretreatment with ibuprofen (5-20 mg/kg), celecoxib (1-10 mg/kg), dipyrone (60-240 mg/kg), and paracetamol (100-200 mg/kg) or subcutaneous injection of dexamethasone (0.25-1.0 mg/kg) dose-dependently reduced or prevented the fever during the zymosan-induced arthritis. Celecoxib (5 mg/kg), paracetamol (150 mg/kg), and dipyrone (120 mg/kg) decreased CSF PGE2 concentration and fever during zymosan-induced arthritis, suggesting the involvement of PGE2 in this response.
Resumo:
In this study, we have addressed the role of H2S in modulating neutrophil migration in either innate (LPS-challenged naive mice) or adaptive (methylated BSA (mBSA)-challenged immunized mice) immune responses. Treatment of mice with H S synthesis inhibitors, DL-propargylglycine (PAG) or beta-cyanoalanine, reduced neutrophil migration induced by LPS or methylated BSA (mBSA) into the peritoneal cavity and by mBSA into the femur/tibial joint of immunized mice. This effect was associated with decreased leukocyte rolling, adhesion, and P-selectin and ICAM-1 expression on endothelium. Predictably, treatment of animals with the H2S donors, NaHS or Lawesson`s reagent, enhanced these parameters. Moreover, the NaHS enhancement of neutrophil migration was not observed in ICAM-1-deficient mice. Neither PAG nor NaHS treatment changed LPS-induced CD18 expression on neutrophils, nor did the LPS- and mBSA-induced release of neutrophil chemoattractant mediators TNF-alpha, keratinocyte-derived chemokine, and LTB4. Furthermore, in vitro MIP-2-induced neutrophil chemotaxis was inhibited by PAG and enhanced by NaHS treatments. Accordingly, MIP-2-induced CXCR2 internalization was enhanced by PAG and inhibited by NaHS treatments. Moreover, NaHS prevented MIP-2-induced CXCR2 desensitization. The PAG and NaHS effects correlated, respectively, with the enhancement and inhibition of MIP-2-induced G protein-coupled receptor kinase 2 expression. The effects of NaHS on neutrophil migration both in vivo and in vitro, together with CXCR2 internalization and G protein-coupled receptor kinase 2 expression were prevented by the ATP-sensitive potassium (K-ATP(+)) channel blocker, glybenclamide. Conversely, diazoxide, a K-ATP(+) channel opener, increased neutrophil migration in vivo. Together, our data suggest that during the inflammatory response, H`S augments neutrophil adhesion and locomotion, by a mechanism dependent on K-ATP(+) channels.