999 resultados para dragon blood
Resumo:
OBJECTIVES: The purpose of this study was to compare myocardial blood flow (MBF) and myocardial flow reserve (MFR) estimates from rubidium-82 positron emission tomography ((82)Rb PET) data using 10 software packages (SPs) based on 8 tracer kinetic models. BACKGROUND: It is unknown how MBF and MFR values from existing SPs agree for (82)Rb PET. METHODS: Rest and stress (82)Rb PET scans of 48 patients with suspected or known coronary artery disease were analyzed in 10 centers. Each center used 1 of 10 SPs to analyze global and regional MBF using the different kinetic models implemented. Values were considered to agree if they simultaneously had an intraclass correlation coefficient >0.75 and a difference <20% of the median across all programs. RESULTS: The most common model evaluated was the Ottawa Heart Institute 1-tissue compartment model (OHI-1-TCM). MBF values from 7 of 8 SPs implementing this model agreed best. Values from 2 other models (alternative 1-TCM and Axially distributed) also agreed well, with occasional differences. The MBF results from other models (e.g., 2-TCM and retention) were less in agreement with values from OHI-1-TCM. CONCLUSIONS: SPs using the most common kinetic model-OHI-1-TCM-provided consistent results in measuring global and regional MBF values, suggesting that they may be used interchangeably to process data acquired with a common imaging protocol.
Resumo:
Pharmacological treatment of hypertension represents a cost-effective way for preventing cardiovascular and renal complications. To benefit maximally from antihypertensive treatment blood pressure (BP) should be brought to below 140/90 mmHg in every hypertensive patient, and even lower (< 130/80 mmHg) if diabetes or renal disease co-exists. Most of the time such targets cannot be reached using monotherapies. This is especially true in patients who exhibit a high cardiovascular risk. The co-administration of two agents acting by different mechanisms considerably increases BP control. Such preparations are not only efficacious, but also well tolerated, and some fixed low-dose combinations have a tolerability profile similar to placebo. This is for instance the case for the preparation containing the angiotensin-converting enzyme inhibitor perindopril (2 mg) and the diuretic indapamide (0.625 mg), a fixed low-dose combination that has recently been shown in controlled interventional trials to be more effective than monotherapies in reducing albuminuria, regressing cardiac hypertrophy and improving macrovascular stiffness. Fixed-dose combinations are becoming more and more popular and are even proposed by current hypertension guidelines as a first-line option to treat hypertensive patients.
Resumo:
We present a method to automatically segment red blood cells (RBCs) visualized by digital holographic microscopy (DHM), which is based on the marker-controlled watershed algorithm. Quantitative phase images of RBCs can be obtained by using off-axis DHM along to provide some important information about each RBC, including size, shape, volume, hemoglobin content, etc. The most important process of segmentation based on marker-controlled watershed is to perform an accurate localization of internal and external markers. Here, we first obtain the binary image via Otsu algorithm. Then, we apply morphological operations to the binary image to get the internal markers. We then apply the distance transform algorithm combined with the watershed algorithm to generate external markers based on internal markers. Finally, combining the internal and external markers, we modify the original gradient image and apply the watershed algorithm. By appropriately identifying the internal and external markers, the problems of oversegmentation and undersegmentation are avoided. Furthermore, the internal and external parts of the RBCs phase image can also be segmented by using the marker-controlled watershed combined with our method, which can identify the internal and external markers appropriately. Our experimental results show that the proposed method achieves good performance in terms of segmenting RBCs and could thus be helpful when combined with an automated classification of RBCs.
Resumo:
J Appl Physiol vol 100, no 2, pp 507-511, 2006
Resumo:
Blood transfusion is an effective and unmediated means of increasing the number of red blood cells in the circulation in order to enhance athletic performance. Blood transfusion became popular in the 1970s among elite endurance athletes and declined at the end of the 1980s with the introduction of recombinant erythropoietin. The successive implementation in 2001 of a direct test to detect exogenous erythropoietin and in 2004 of a test to detect allogeneic blood transfusion forced cheating athletes to reinfuse fully immunologically compatible blood. The implementation of indirect markers of blood doping stored in an Athlete's Biological Passport provides a powerful means to deter any form of blood transfusion.
Resumo:
Self-measurement of blood pressure at home is increasingly used in the diagnostic and therapeutic approach of hypertension. This technique allows multiple measurements of blood pressure away from the clinical setting, making it possible to improve the evaluation of cardiovascular risk. Recently new guidelines on the use of self-measured blood pressure have been made available by the European Society of Hypertension, as summarized in the present paper.
Resumo:
BACKGROUND AND PURPOSE: Knowledge of cerebral blood flow (CBF) alterations in cases of acute stroke could be valuable in the early management of these cases. Among imaging techniques affording evaluation of cerebral perfusion, perfusion CT studies involve sequential acquisition of cerebral CT sections obtained in an axial mode during the IV administration of iodinated contrast material. They are thus very easy to perform in emergency settings. Perfusion CT values of CBF have proved to be accurate in animals, and perfusion CT affords plausible values in humans. The purpose of this study was to validate perfusion CT studies of CBF by comparison with the results provided by stable xenon CT, which have been reported to be accurate, and to evaluate acquisition and processing modalities of CT data, notably the possible deconvolution methods and the selection of the reference artery. METHODS: Twelve stable xenon CT and perfusion CT cerebral examinations were performed within an interval of a few minutes in patients with various cerebrovascular diseases. CBF maps were obtained from perfusion CT data by deconvolution using singular value decomposition and least mean square methods. The CBF were compared with the stable xenon CT results in multiple regions of interest through linear regression analysis and bilateral t tests for matched variables. RESULTS: Linear regression analysis showed good correlation between perfusion CT and stable xenon CT CBF values (singular value decomposition method: R(2) = 0.79, slope = 0.87; least mean square method: R(2) = 0.67, slope = 0.83). Bilateral t tests for matched variables did not identify a significant difference between the two imaging methods (P >.1). Both deconvolution methods were equivalent (P >.1). The choice of the reference artery is a major concern and has a strong influence on the final perfusion CT CBF map. CONCLUSION: Perfusion CT studies of CBF achieved with adequate acquisition parameters and processing lead to accurate and reliable results.