998 resultados para deer mice
Resumo:
AIMS: More than two billion people worldwide are deficient in key micronutrients. Single micronutrients have been used at high doses to prevent and treat dietary insufficiencies. Yet the impact of combinations of micronutrients in small doses aiming to improve lipid disorders and the corresponding metabolic pathways remains incompletely understood. Thus, we investigated whether a combination of micronutrients would reduce fat accumulation and atherosclerosis in mice. METHODS AND RESULTS: Lipoprotein receptor-null mice fed with an original combination of micronutrients incorporated into the daily chow showed reduced weight gain, body fat, plasma triglycerides, and increased oxygen consumption. These effects were achieved through enhanced lipid utilization and reduced lipid accumulation in metabolic organs and were mediated, in part, by the nuclear receptor PPARα. Moreover, the micronutrients partially prevented atherogenesis when administered early in life to apolipoprotein E-null mice. When the micronutrient treatment was started before conception, the anti-atherosclerotic effect was stronger in the progeny. This finding correlated with decreased post-prandial triglyceridaemia and vascular inflammation, two major atherogenic factors. CONCLUSION: Our data indicate beneficial effects of a combination of micronutritients on body weight gain, hypertriglyceridaemia, liver steatosis, and atherosclerosis in mice, and thus our findings suggest a novel cost-effective combinatorial micronutrient-based strategy worthy of being tested in humans.
Resumo:
Plasma urate levels are higher in humans than rodents (240-360 vs. â^¼30 μM) because humans lack the liver enzyme uricase. High uricemia in humans may protect against oxidative stress, but hyperuricemia also associates with the metabolic syndrome, and urate and uric acid can crystallize to cause gout and renal dysfunctions. Thus, hyperuricemic animal models to study urate-induced pathologies are needed. We recently generated mice with liver-specific ablation of Glut9, a urate transporter providing access of urate to uricase (LG9KO mice). LG9KO mice had moderately high uricemia (â^¼120 μM). To further increase their uricemia, here we gavaged LG9KO mice for 3 days with inosine, a urate precursor; this treatment was applied in both chow- and high-fat-fed mice. In chow-fed LG9KO mice, uricemia peaked at 300 μM 2 h after the first gavage and normalized 24 h after the last gavage. In contrast, in high-fat-fed LG9KO mice, uricemia further rose to 500 μM. Plasma creatinine strongly increased, indicating acute renal failure. Kidneys showed tubule dilation, macrophage infiltration, and urate and uric acid crystals, associated with a more acidic urine. Six weeks after inosine gavage, plasma urate and creatinine had normalized. However, renal inflammation, fibrosis, and organ remodeling had developed despite the disappearance of urate and uric acid crystals. Thus, hyperuricemia and high-fat diet feeding combined to induce acute renal failure. Furthermore, a sterile inflammation caused by the initial crystal-induced lesions developed despite the disappearance of urate and uric acid crystals.
Resumo:
Peptides that interfere with the natural resistance of cancer cells to genotoxin-induced apoptosis may improve the efficacy of anticancer regimens. We have previously reported that a cell-permeable RasGAP-derived peptide (TAT-RasGAP(317-326)) specifically sensitizes tumor cells to genotoxin-induced apoptosis in vitro. Here, we examined the in vivo stability of a protease-resistant D-form of the peptide, RI.TAT-RasGAP(317-326), and its effect on tumor growth in nude mice bearing subcutaneous human colon cancer HCT116 xenograft tumors. After intraperitoneal injection, RI.TAT-RasGAP(317-326) persisted in the blood of nude mice for more than 1 hour and was detectable in various tissues and subcutaneous tumors. Tumor-bearing mice treated daily for 7 days with RI.TAT-RasGAP(317-326) (1.65 mg/kg body weight) and cisplatin (0.5 mg/kg body weight) or doxorubicin (0.25 mg/kg body weight) displayed reduced tumor growth compared with those treated with either genotoxin alone (n = 5-7 mice per group; P = .004 and P = .005, respectively; repeated measures analysis of variance [ANOVA, two-sided]). This ability of the RI.TAT-RasGAP(317-326) peptide to enhance the tumor growth inhibitory effect of cisplatin was still observed at peptide doses that were at least 150-fold lower than the dose lethal to 50% of mice. These findings provide the proof of principle that RI.TAT-RasGAP(317-326) may be useful for improving the efficacy of chemotherapy in patients.
Resumo:
Mice with homologous disruption of the gene coding for the ligand-binding chain of the interferon (IFN) gamma receptor and derived from a strain genetically resistant to infection with Leishmania major have been used to study further the role of this cytokine in the differentiation of functional CD4+ T cell subsets in vivo and resistance to infection. Wild-type 129/Sv/Ev mice are resistant to infection with this parasite, developing only small lesions, which resolve spontaneously within 6 wk. In contrast, mice lacking the IFN-gamma receptor develop large, progressing lesions. After infection, lymph nodes (LN) and spleens from both wild-type and knockout mice showed an expansion of CD4+ cells producing IFN-gamma as revealed by measuring IFN-gamma in supernatants of specifically stimulated CD4+ T cells, by enumerating IFN-gamma-producing T cells, and by Northern blot analysis of IFN-gamma transcripts. No biologically active interleukin (IL) 4 was detected in supernatants of in vitro-stimulated LN or spleen cells from infected wild-type or deficient mice. Reverse transcription polymerase chain reaction analysis with primers specific for IL-4 showed similar IL-4 message levels in LN from both types of mice. The IL-4 message levels observed were comparable to those found in similarly infected C57BL/6 mice and significantly lower than the levels found in BALB/c mice. Anti-IFN-gamma treatment of both types of mice failed to alter the pattern of cytokines produced after infection. These data show that even in the absence of IFN-gamma receptors, T helper cell (Th) 1-type responses still develop in genetically resistant mice with no evidence for the expansion of Th2 cells.
Resumo:
β-blockers and β-agonists are primarily used to treat cardiovascular diseases. Inter-individual variability in response to both drug classes is well recognized, yet the identity and relative contribution of the genetic players involved are poorly understood. This work is the first genome-wide association study (GWAS) addressing the values and susceptibility of cardiovascular-related traits to a selective β(1)-blocker, Atenolol (ate), and a β-agonist, Isoproterenol (iso). The phenotypic dataset consisted of 27 highly heritable traits, each measured across 22 inbred mouse strains and four pharmacological conditions. The genotypic panel comprised 79922 informative SNPs of the mouse HapMap resource. Associations were mapped by Efficient Mixed Model Association (EMMA), a method that corrects for the population structure and genetic relatedness of the various strains. A total of 205 separate genome-wide scans were analyzed. The most significant hits include three candidate loci related to cardiac and body weight, three loci for electrocardiographic (ECG) values, two loci for the susceptibility of atrial weight index to iso, four loci for the susceptibility of systolic blood pressure (SBP) to perturbations of the β-adrenergic system, and one locus for the responsiveness of QTc (p<10(-8)). An additional 60 loci were suggestive for one or the other of the 27 traits, while 46 others were suggestive for one or the other drug effects (p<10(-6)). Most hits tagged unexpected regions, yet at least two loci for the susceptibility of SBP to β-adrenergic drugs pointed at members of the hypothalamic-pituitary-thyroid axis. Loci for cardiac-related traits were preferentially enriched in genes expressed in the heart, while 23% of the testable loci were replicated with datasets of the Mouse Phenome Database (MPD). Altogether these data and validation tests indicate that the mapped loci are relevant to the traits and responses studied.
Resumo:
Children conceived by assisted reproductive technologies (ART) display a level of vascular dysfunction similar to that seen in children of mothers with preeclamspia. The long-term consequences of ART-associated vascular disorders are unknown and difficult to investigate in healthy children. Here, we found that vasculature from mice generated by ART display endothelial dysfunction and increased stiffness, which translated into arterial hypertension in vivo. Progeny of male ART mice also exhibited vascular dysfunction, suggesting underlying epigenetic modifications. ART mice had altered methylation at the promoter of the gene encoding eNOS in the aorta, which correlated with decreased vascular eNOS expression and NO synthesis. Administration of a deacetylase inhibitor to ART mice normalized vascular gene methylation and function and resulted in progeny without vascular dysfunction. The induction of ART-associated vascular and epigenetic alterations appeared to be related to the embryo environment; these alterations were possibly facilitated by the hormonally stimulated ovulation accompanying ART. Finally, ART mice challenged with a high-fat diet had roughly a 25% shorter life span compared with control animals. This study highlights the potential of ART to induce vascular dysfunction and shorten life span and suggests that epigenetic alterations contribute to these problems.
Resumo:
Tumour localisation and tumour to normal tissue ratios of a chimeric anti-carcinoembryonic antigen (CEA) monoclonal antibody (MAb), in intact form and as an F(ab')2 fragment labelled with 125I and 131I, were compared in groups of nude mice bearing four different colon cancer xenografts, T380, Co112 or LoVo, of human origin, or a rat colon cancer transfected with human CEA cDNA, called '3G7'. For each tumour, three to four mice per time point were analysed 6, 12, 24, 48 and 96 h after MAb injection. In the different tumours, maximal localisation of intact MAb was obtained at 24 to 48 h, and of F(ab')2 fragment 12 to 24 h after injection. Among the different tumours, localisation was highest with colon cancer T380, with 64% of the injected dose per gram (% ID/g) for the intact MAb and 57% for its F(ab')2 fragment, while in the three other tumours, maximal localisation ranged from 14 to 22% ID g-1 for the intact MAb and was about 11% for the F(ab')2. Tumour to normal tissue ratios of intact MAb increased rapidly until 24 h after injection and remained stable or showed only a minor increase thereafter. In contrast, for the F(ab')2 fragment, the tumour to normal tissue ratios increased steadily up to 4 days after injection reaching markedly higher values than those obtained with intact MAb. For the four different xenografts, tumour to blood ratios of F(ab')2 were about 2, 3 and 5 to 16 times higher than those of intact antibodies at 12, 24 and 96 h after injection, respectively.