995 resultados para data stratification
Resumo:
In the B-ISDN there is a provision for four classes of services, all of them supported by a single transport network (the ATM network). Three of these services, the connected oriented (CO) ones, permit connection access control (CAC) but the fourth, the connectionless oriented (CLO) one, does not. Therefore, when CLO service and CO services have to share the same ATM link, a conflict may arise. This is because a bandwidth allocation to obtain maximum statistical gain can damage the contracted ATM quality of service (QOS); and vice versa, in order to guarantee the contracted QOS, the statistical gain have to be sacrificed. The paper presents a performance evaluation study of the influence of the CLO service on a CO service (a circuit emulation service or a variable bit-rate service) when sharing the same link
Resumo:
Geochemical data that is derived from the whole or partial analysis of various geologic materialsrepresent a composition of mineralogies or solute species. Minerals are composed of structuredrelationships between cations and anions which, through atomic and molecular forces, keep the elementsbound in specific configurations. The chemical compositions of minerals have specific relationships thatare governed by these molecular controls. In the case of olivine, there is a well-defined relationshipbetween Mn-Fe-Mg with Si. Balances between the principal elements defining olivine composition andother significant constituents in the composition (Al, Ti) have been defined, resulting in a near-linearrelationship between the logarithmic relative proportion of Si versus (MgMnFe) and Mg versus (MnFe),which is typically described but poorly illustrated in the simplex.The present contribution corresponds to ongoing research, which attempts to relate stoichiometry andgeochemical data using compositional geometry. We describe here the approach by which stoichiometricrelationships based on mineralogical constraints can be accounted for in the space of simplicialcoordinates using olivines as an example. Further examples for other mineral types (plagioclases andmore complex minerals such as clays) are needed. Issues that remain to be dealt with include thereduction of a bulk chemical composition of a rock comprised of several minerals from which appropriatebalances can be used to describe the composition in a realistic mineralogical framework. The overallobjective of our research is to answer the question: In the cases where the mineralogy is unknown, arethere suitable proxies that can be substituted?Kew words: Aitchison geometry, balances, mineral composition, oxides
Resumo:
Our essay aims at studying suitable statistical methods for the clustering ofcompositional data in situations where observations are constituted by trajectories ofcompositional data, that is, by sequences of composition measurements along a domain.Observed trajectories are known as “functional data” and several methods have beenproposed for their analysis.In particular, methods for clustering functional data, known as Functional ClusterAnalysis (FCA), have been applied by practitioners and scientists in many fields. To ourknowledge, FCA techniques have not been extended to cope with the problem ofclustering compositional data trajectories. In order to extend FCA techniques to theanalysis of compositional data, FCA clustering techniques have to be adapted by using asuitable compositional algebra.The present work centres on the following question: given a sample of compositionaldata trajectories, how can we formulate a segmentation procedure giving homogeneousclasses? To address this problem we follow the steps described below.First of all we adapt the well-known spline smoothing techniques in order to cope withthe smoothing of compositional data trajectories. In fact, an observed curve can bethought of as the sum of a smooth part plus some noise due to measurement errors.Spline smoothing techniques are used to isolate the smooth part of the trajectory:clustering algorithms are then applied to these smooth curves.The second step consists in building suitable metrics for measuring the dissimilaritybetween trajectories: we propose a metric that accounts for difference in both shape andlevel, and a metric accounting for differences in shape only.A simulation study is performed in order to evaluate the proposed methodologies, usingboth hierarchical and partitional clustering algorithm. The quality of the obtained resultsis assessed by means of several indices
Resumo:
For glioblastoma (GBM), survival classification has primarily relied on clinical criteria, exemplified by the Radiation Therapy Oncology Group (RTOG) recursive partitioning analysis (RPA). We sought to improve tumor classification by combining tumor biomarkers with the clinical RPA data. To accomplish this, we first developed 4 molecular biomarkers derived from gene expression profiling, a glioma CpG island methylator phenotype, a novel MGMT promoter methylation assay, and IDH1 mutations. A molecular predictor (MP) model was created with these 4 biomarkers on a training set of 220 retrospectively collected archival GBMtumors. ThisMPwas further combined with RPA classification to develop a molecular-clinical predictor (MCP). The median survivals for the combined, 4-class MCP were 65 months, 31 months, 13 months, and 9 months, which was significantly improved when compared with the RPA alone. The MCP was then applied to 725 samples from the RTOG-0525 cohort, showing median survival for each risk group of NR, 26 months, 16 months, and 11 months. The MCP was significantly improved over the RPA at outcome prediction in the RTOG 0525 cohort with a 33%increase in explained variation with respect to survival, validating the result obtained in the training set. To illustrate the benefit of the MCP for patient stratification, we examined progression-free survival (PFS) for patients receiving standard-dose temozolomide (SD-TMZ) vs. dose-dense TMZ (DD-TMZ) in RPA and MCP risk groups. A significant difference between DD-TMZ and SD-TMZ was observed in the poorest surviving MCP risk group with a median PFS of 6 months vs. 3 months (p ¼ 0.048, log-rank test). This difference was not seen using the RPA classification alone. In summary, we have developed a combined molecular-clinical predictor that appears to improve outcome prediction when compared with clinical variables alone. This MCP may serve to better identify patients requiring intensive treatments beyond the standard of care.
Resumo:
One of the tantalising remaining problems in compositional data analysis lies in how to deal with data sets in which there are components which are essential zeros. By anessential zero we mean a component which is truly zero, not something recorded as zero simply because the experimental design or the measuring instrument has not been sufficiently sensitive to detect a trace of the part. Such essential zeros occur inmany compositional situations, such as household budget patterns, time budgets,palaeontological zonation studies, ecological abundance studies. Devices such as nonzero replacement and amalgamation are almost invariably ad hoc and unsuccessful insuch situations. From consideration of such examples it seems sensible to build up amodel in two stages, the first determining where the zeros will occur and the secondhow the unit available is distributed among the non-zero parts. In this paper we suggest two such models, an independent binomial conditional logistic normal model and a hierarchical dependent binomial conditional logistic normal model. The compositional data in such modelling consist of an incidence matrix and a conditional compositional matrix. Interesting statistical problems arise, such as the question of estimability of parameters, the nature of the computational process for the estimation of both the incidence and compositional parameters caused by the complexity of the subcompositional structure, the formation of meaningful hypotheses, and the devising of suitable testing methodology within a lattice of such essential zero-compositional hypotheses. The methodology is illustrated by application to both simulated and real compositional data