995 resultados para crash data
Resumo:
National pride is both an important and understudied topic with respect to economic behaviour, hence this thesis investigates whether: 1) there is a "light" side of national pride through increased compliance, and a "dark" side linked to exclusion; 2) successful priming of national pride is linked to increased tax compliance; and 3) East German post-reunification outmigration is related to loyalty. The project comprises three related empirical studies, analysing evidence from a large, aggregated, international survey dataset; a tax compliance laboratory experiment combining psychological priming with measurement of heart rate variability; and data collected after the fall of the Berlin Wall (a situation approximating a natural experiment).
Resumo:
Since 2006, we have been conducting urban informatics research that we define as “the study, design, and practice of urban experiences across different urban contexts that are created by new opportunities of real-time, ubiquitous technology and the augmentation that mediates the physical and digital layers of people networks and urban infrastructures” [1]. Various new research initiatives under the label “urban informatics” have been started since then by universities (e.g., NYU’s Center for Urban Science and Progress) and industry (e.g., Arup, McKinsey) worldwide. Yet, many of these new initiatives are limited to what Townsend calls, “data-driven approaches to urban improvement” [2]. One of the key challenges is that any quantity of aggregated data does not easily translate directly into quality insights to better understand cities. In this talk, I will raise questions about the purpose of urban informatics research beyond data, and show examples of media architecture, participatory city making, and citizen activism. I argue for (1) broadening the disciplinary foundations that urban science approaches draw on; (2) maintaining a hybrid perspective that considers both the bird’s eye view as well as the citizen’s view, and; (3) employing design research to not be limited to just understanding, but to bring about actionable knowledge that will drive change for good.
Resumo:
Big data analysis in healthcare sector is still in its early stages when comparing with that of other business sectors due to numerous reasons. Accommodating the volume, velocity and variety of healthcare data Identifying platforms that examine data from multiple sources, such as clinical records, genomic data, financial systems, and administrative systems Electronic Health Record (EHR) is a key information resource for big data analysis and is also composed of varied co-created values. Successful integration and crossing of different subfields of healthcare data such as biomedical informatics and health informatics could lead to huge improvement for the end users of the health care system, i.e. the patients.
Resumo:
Huge amount of data are generated from a variety of information sources in healthcare while the data sources originate from a veracity of clinical information systems and corporate data warehouses. The data derived from the above data sources are used for analysis and trending purposes thus playing an influential role as a real time decision-making tool. The unstructured, narrative data provided by these data sources qualify as healthcare big-data and researchers argue that the application of big-data in healthcare might enable the accountability and efficiency.
Resumo:
Distributed systems are widely used for solving large-scale and data-intensive computing problems, including all-to-all comparison (ATAC) problems. However, when used for ATAC problems, existing computational frameworks such as Hadoop focus on load balancing for allocating comparison tasks, without careful consideration of data distribution and storage usage. While Hadoop-based solutions provide users with simplicity of implementation, their inherent MapReduce computing pattern does not match the ATAC pattern. This leads to load imbalances and poor data locality when Hadoop's data distribution strategy is used for ATAC problems. Here we present a data distribution strategy which considers data locality, load balancing and storage savings for ATAC computing problems in homogeneous distributed systems. A simulated annealing algorithm is developed for data distribution and task scheduling. Experimental results show a significant performance improvement for our approach over Hadoop-based solutions.