1000 resultados para conditions
Resumo:
The application of slurry nutrients to land can be associated with unintended losses to the environment depending on soil and weather conditions. Correct timing of slurry application, however, can increase plant nutrient uptake and reduce losses. A decision support system (DSS), which predicts optimum conditions for slurry spreading based on the Hybrid Soil Moisture Deficit (HSMD) model, was investigated for use as a policy tool. The DSS recommendations were compared to farmer perception of suitable conditions for slurry spreading for three soil drainage classes (well, moderate and poorly drained) to better understand on farm slurry management practices and to identify potential conflict with farmer opinion. Six farmers participated in a survey over two and a half years, during which they completed a daily diary, and their responses were compared to Soil Moisture Deficit (SMD) calculations and weather data recorded by on farm meteorological stations. The perception of land drainage quality differed between farmers and was related to their local knowledge and experience. It was found that the allocation of grass fields to HSMD drainage classes using a visual assessment method aligned farmer perception of drainage at the national scale. Farmer opinion corresponded to the theoretical understanding that slurry should not be applied when the soil is wetter than field capacity, i.e. when drainage can occur. While weather and soil conditions (especially trafficability) were the principal reasons given by farmers not to spread slurry, farm management practices (grazing and silage) and current Nitrates Directive policies (closed winter period for spreading) combined with limited storage capacities were obstacles to utilisation of slurry nutrients. Despite the slightly more restrictive advice of the DSS regarding the number of suitable spreading opportunities, the system has potential to address an information deficit that would help farmers to reduce nutrient losses and optimise plant nutrient uptake by improved slurry management. The DSS advice was in general agreement with the farmers and, therefore, they should not be resistant to adopting the tool for day to day management.
Resumo:
Although antibiotics from different classes are frequently prescribed in combination to prevent the development of resistance amongst Cystic Fibrosis (CF) respiratory pathogens, there is a lack of data as to the efficacy of this approach. We have previously shown that a 4:1 (w/w) combination of fosfomycin and tobramycin (F:T) has excellent activity against CF pathogens with increased activity under physiologically relevant anaerobic conditions. Therefore, the aim of this study was to determine whether F:T could delay or prevent the onset of resistance compared to either fosfomycin or tobramycin alone under aerobic and anaerobic conditions. The frequency of spontaneous mutants arising following exposure to fosfomycin, tobramycin and F:T was determined for clinical Pseudomonas aeruginosa and MRSA isolates under aerobic and anaerobic conditions. The effect of sub-inhibitory concentrations of fosfomycin, tobramycin and F:T on the induction of resistance was also investigated, with the stability of resistance and fitness cost associated with resistance assessed if it developed. P. aeruginosa and MRSA isolates had a lower frequency of spontaneous mutants to F:T compared to fosfomycin and tobramycin under both aerobic and anaerobic conditions. There was a maximum two-fold increase in F:T MICs when P. aeruginosa and MRSA isolates were passaged in sub-inhibitory F:T for 12 days. In contrast, sequential resistance to fosfomycin and tobramycin developed quickly (n = 3 days for both) after passage in sub-inhibitory concentrations. Once developed, both fosfomycin and tobramycin resistance was stable and not associated with a biological fitness cost to either P. aeruginosa or MRSA isolates. The results of this study suggest that F:T may prevent the development of resistance compared to fosfomycin or tobramycin alone under aerobic and physiologically relevant anaerobic conditions. F:T may be a potential treatment option in CF patients chronically colonised by MRSA and/or P. aeruginosa.
Resumo:
The activity of aminoglycosides, used to treat Pseudomonas aeruginosa respiratory infection in cystic fibrosis (CF) patients, is reduced under the anaerobic conditions that reflect the CF lung in vivo. In contrast, a 4:1 (w/w) combination of fosfomycin and tobramycin (F:T), under investigation for use in the treatment of CF lung infection, has increased activity against P. aeruginosa under anaerobic conditions. The aim of this study was to elucidate the mechanisms underlying the increased activity of F:T under anaerobic conditions. Microarray analysis was used to identify the transcriptional basis of increased F:T activity under anaerobic conditions, and key findings were confirmed by microbiological tests including nitrate utilization assays, growth curves and susceptibility testing. Notably, growth in sub-inhibitory concentrations of F:T, but not tobramycin or fosfomycin alone, significantly downregulated (p <0.05) nitrate reductase genes narG and narH, essential for normal anaerobic growth of P. aeruginosa. Under anaerobic conditions, F:T significantly decreased (p
Resumo:
The spontaneous oxidation of CO adsorbates on a Pt electrode modified by Ru under open circuit (OC) conditions in perchloric acid solution has been followed, for the first time, using in situ FTIR spectroscopy, and the dynamics of the surface processes taking place have been elucidated. The IR data show that adsorbed CO present on both the Ru and Pt domains and can be oxidized by the oxygen-containing adlayer on the Ru in a chemical process to produce CO under OC conditions. There is a free exchange of CO is between the Ru and Pt sites. Oxidation of CO may take place at the edges of the Ru islands, but CO is transfer, at least on the time scale of these experiments, allows the two different populations to maintain equilibrium. Oxidation is limited in this region by the rate of supply of oxygen to die surface of the catalyst. A mechanism is postulated to explain the observed behavior.
Resumo:
This paper reports the first observation, using in situ FTIR spectroscopy, of the oxidation of CO adsorbates on the Ru(0001) electrode to CO under open circuit (oc) conditions in both perchloric acid and sulphuric acid solution at 20 and 55 °C. While the significant oc oxidation of the adsorbed CO on the Ru(0001) electrode was observed in perchloric acid solution, much less oc oxidation took place in sulfuric acid solution due to the specific adsorption of bisulfate at the Ru surface which inhibits the surface oxidation and reduces the reactivity of the surface towards the oxidation of CO . The oc oxidation of the CO depends strongly on the oxygen concentration in the solution and the temperature. The data so obtained are compared to those observed at the gas|solid interface, as well as to those obtained from the electro-oxidation of CO , and possible new catalytic oxidation reaction mechanisms are discussed. In addition, it is shown that the C-O frequency of the adsorbed CO may be used as an effective probe of the open circuit potential. © 2003 Elsevier B.V. All rights reserved.
Resumo:
This paper presents a voltage and power quality enhancement scheme for a doubly-fed induction generator (DFIG) wind farm during variable wind conditions. The wind profiles were derived considering the measured data at a DFIG wind farm located in Northern Ireland (NI). The aggregated DFIG wind farm model was validated using measured data at a wind farm during variable generation. The voltage control strategy was developed considering the X/R ratio of the wind farm feeder which connects the wind farm and the grid. The performance of the proposed strategy was evaluated for different X/R ratios, and wind profiles with different characteristics. The impact of flicker propagation along the wind farm feeder and effectiveness of the proposed strategy is also evaluated with consumer loads connected to the wind farm feeder. It is shown that voltage variability and short-term flicker severity is significantly reduced following implementation of the novel strategy described.
Resumo:
Hyperglycemia-induced damage to the glomerular podocyte is thought to be a critical early event in diabetic nephropathy. Interventions that prevent podocyte damage or loss have been shown to have potential for the treatment of diabetic nephropathy. New data show that conditioned medium from adipocyte-derived mesenchymal stem cells has the potential to protect podocytes from high-glucose-induced damage. Furthermore, epidermal growth factor may be the critical ingredient mediating this effect. These data suggest that components of the conditioned medium of mesenchymal stem cells, in addition to the cells themselves, may have potential for the treatment of diseases such as diabetic nephropathy.
Resumo:
There is a paradox between the remarkable genetic stability of measles virus (MV) in the field and the high mutation rates implied by the frequency of the appearance of monoclonal antibody escape mutants generated when the virus is pressured to revert in vitro (S. J. Schrag, P. A. Rota, and W. J. Bellini, J. Virol. 73: 51-54, 1999). We established a highly sensitive assay to determine frequencies of various categories of mutations in large populations of wild-type and laboratory-adapted MVs using recombinant viruses containing an additional transcription unit (ATU) encoding enhanced green fluorescent protein (EGFP). Single and double mutations were made in the fluorophore of EGFP to ablate fluorescence. The frequencies of reversion mutants in the population were determined by measuring the appearance of fluorescence indicating a revertant virus. This allows mutation rates to be measured under nonselective conditions, as phenotypic reversion to fluorescence requires only either a single-or a double-nucleotide change and amino acid substitution, which does not affect the length of the nonessential reporter protein expressed from the ATU. Mutation rates in MV are the same for wild-type and laboratory-adapted viruses, and they are an order of magnitude lower than the previous measurement assessed under selective conditions. The actual mutation rate for MV is approximately 1.8 x 10(-6) per base per replication event. Copyright © 2013, American Society for Microbiology. All Rights Reserved.