1000 resultados para chemical defense


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The input to soils made by pollen and its subsequent mineralization has rarely been investigated from a soil microbiological point of view even though the small but significant quantities of C and N in pollen may make an important contribution to nutrient cycling. The relative resistance to decomposition of pollen exines (outer layers) has led to much of the focus of pollen in soil being on its preservation for archaeological and palaeo-ecological purposes. We have examined aspects of the chemical composition and decomposition of pollen from birch (Betula alba) and maize (Zea mays) in soil. The relatively large N contents, small C-to-N ratios and large water-soluble contents of pollen from both species indicated that they would be readily mineralized in soil. When added to soil and incubated at 16 degrees C an amount of C equivalent to 22-26% of the added pollen C was lost as CO2 within 22 days, with the Z. mays pollen decomposing faster. For B. alba pollen, the water-soluble fraction decomposed faster than the whole pollen and the insoluble fraction decomposed more slowly over 22 days. By contrast, there were no significant differences in the decomposition rates of the different fractions from Z. mays pollen. Solid-state C-13 nuclear magnetic resonance (NMR) revealed no gross chemical differences between the pollen of these two species, with strong resonances in the alkyl- and methyl-C region (0-45 p.p.m.) indicative of aliphatic compounds, the O-alkyl-C (60-90 p.p.m.) and the acetal- and ketal-C region (90-110 p.p.m.) indicative of polysaccharides, and the carbonyl-C region indicative of peptides and carboxylic acids. In addition, both pollens gave a small but distinct resonance at 55 p.p.m. attributed to N-alkyl-C. The resonances attributed to polysaccharides were lost completely or substantially reduced after decomposition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The uptake of metals by earthworms occurs predominantly via the soil pore water, or via an uptake route which is related to the soil pore water metal concentration. However, it has been suggested that the speciation of the metal is also important. A novel technique is described which exposes Eisenia andrei Bouche to contaminant bearing solutions in which the chemical factors affecting its speciation may be individually and systematically manipulated. In a preliminary experiment, the LC50 for copper nitrate was 0.046 mg l(-1) (95 % confidence intervals: 0.03 and 0.07 mg l(-1)). There was a significant positive correlation between earthworm mortality and bulk copper concentration in solution (R-2 = 0.88, P less than or equal to 0.001), and a significant positive increase in earthworm tissue copper concentration with increasing copper concentration in solution (R-2 = 0.97, P less than or equal to 0.001). It is anticipated that quantifying the effect of soil solution chemical speciation on copper bioavailability will provide an excellent aid to understanding the importance of chemical composition and the speciation of metals, in the calculation of toxicological parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Different earthworm species have different tolerances of acid soil conditions, and the application of lime to upland grassland to improve the grazing quality may therefore alter the size and diversity of the earthworm community. Altering soil properties may also affect the chemical characteristics of organic C in earthworm casts. We surveyed the earthworm community of an upland grassland in southern Scotland at the outset of annual lime applications, and after 3 years, and used C-13 nuclear magnetic resonance (NMR) spectroscopy to assess the distribution of C between different functional groups in the organic matter. In addition, soil was incubated for 8 weeks with several earthworm species in the presence or absence of lime, and the earthworm casts were subsequently analysed by C-13 NMR spectroscopy. Liming did not significantly affect earthworm abundance or species diversity, but it did affect the chemical composition of the casts. Casts from earthworms incubated in unlimed soil had greater ratios of alkyl-C to O-alkyl-C, indicative of more decomposed, recalcitrant C, and spectra from litter-feeding species had the greatest intensities of O-alkyl-C signals. In limed soil, the largest O-alkyl-C signal intensities were not restricted to litter-feeding species, indicating an increase in the quality of organic matter ingested by geophagous species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates phosphorus (P) transport and transformation dynamics in two contrasting sub-catchments of the River Kennel, England. Samples were collected daily under baseflow and hourly under stormflow conditions using autosamplers for 2 years and analysed for a range of determinands (full P fractionation, suspended sediment (SS), cations, pH, alkalinity, temperature and oxygen). Concentrations of SRP, SUP, PP and SS were higher in the flashy River Enborne (means of 0.186, 0.071, 0.101 and 34 mg l(-1), respectively) than the groundwater-fed River Lambourn (0.079, 0.057, 0.028 and 9 mg l(-1), respectively). A seasonal trend in the daily P dataset was evident, with lower concentrations during intermediate flows and the spring (caused by a dilution effect and macrophyte uptake) than during baseflow conditions. However, in the hourly P dataset, highest concentrations were observed during storm events in the autumn and winter (reflecting higher scour with increased capacity to entrain particles). Storm events were more significant in contributing to the total P load in the River Enborne than the River Lambourn, especially during August to October, when dry antecedent conditions were observed in the catchment. Re-suspension of P-rich sediment that accumulated within the channel during summer low flows might account for these observations. It is suggested that a P-calcite co-precipitation mechanism was operating during summer in the River Lambourn, while adsorption by metal oxyhydroxide groups was an important mechanism controlling P fractionation in the River Enborne. The influence of flow conditions and channel storage/release mechanisms on P dynamics in these two lowland rivers is assessed. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article investigates the temporal and spatial controls on sediment-phosphorus (P) dynamics in two contrasting sub-catchments of the River Kennet, England. Suspended sediment (collected under representative flow conditions) and size-fractionated bedload (collected weekly for one year) from the Rivers Lambourn and Enborne was analysed for a range of physico-chemical determinands. Total P concentrations were highest in the most mobile fractions of sediment: suspended sediment, fine silt and clay and organic matter (mean concentrations of 1758, 1548 and 1440 mug P g(-1) dry sediment, respectively). Correlation analysis showed significant relationships between total P and total iron (n = 110), total manganese (n = 110), organic matter (n = 110) and specific surface area (n = 28) in the Lambourn (r(2) 0.71, 0.68, 0.62 and 0.52, respectively) and between total P and total iron (n = 110), total manganese (n = 110) and organic matter (n = 110) in the Enborne (r(2) 0.74, 0.85 and 0.68, respectively). These data highlight the importance of metal oxyhydroxide adsorption of P on fine particulates and organic matter. However, high total P concentrations in the granule gravel and coarse sand size fraction during the summer period (mean concentration 228 mug P g(-1) dry sediment) also highlight the role of calcite co-precipitation on P dynamics in the Lambourn. P to cation ratios in Lambourn sediment indicated that fine silt and clay and granule gravel and coarse sand size fractions were potential sources of P release to the water column during specific periods of the summer and autumn. In the Enborne, however, only the granule gravel and coarse sand size fraction had high ratios and a slow, constant release of P was observed. In addition, scanning electron microscopy work confirmed the association of P with calcite in the Lambourn and P with iron on clay particles in the Enborne. The study highlighted the importance of the chemical and physical properties of the sediment in influencing the mechanisms controlling P storage and release within river channels. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A wide variety of exposure models are currently employed for health risk assessments. Individual models have been developed to meet the chemical exposure assessment needs of Government, industry and academia. These existing exposure models can be broadly categorised according to the following types of exposure source: environmental, dietary, consumer product, occupational, and aggregate and cumulative. Aggregate exposure models consider multiple exposure pathways, while cumulative models consider multiple chemicals. In this paper each of these basic types of exposure model are briefly described, along with any inherent strengths or weaknesses, with the UK as a case study. Examples are given of specific exposure models that are currently used, or that have the potential for future use, and key differences in modelling approaches adopted are discussed. The use of exposure models is currently fragmentary in nature. Specific organisations with exposure assessment responsibilities tend to use a limited range of models. The modelling techniques adopted in current exposure models have evolved along distinct lines for the various types of source. In fact different organisations may be using different models for very similar exposure assessment situations. This lack of consistency between exposure modelling practices can make understanding the exposure assessment process more complex, can lead to inconsistency between organisations in how critical modelling issues are addressed (e.g. variability and uncertainty), and has the potential to communicate mixed messages to the general public. Further work should be conducted to integrate the various approaches and models, where possible and regulatory remits allow, to get a coherent and consistent exposure modelling process. We recommend the development of an overall framework for exposure and risk assessment with common approaches and methodology, a screening tool for exposure assessment, collection of better input data, probabilistic modelling, validation of model input and output and a closer working relationship between scientists and policy makers and staff from different Government departments. A much increased effort is required is required in the UK to address these issues. The result will be a more robust, transparent, valid and more comparable exposure and risk assessment process. (C) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sustainability of cereal/legume intercropping was assessed by monitoring trends in grain yield, soil organic C (SOC) and soil extractable P (Olsen method) measured over 13 years at a long-term field trial on a P-deficient soil in semi-arid Kenya. Goat manure was applied annually for 13 years at 0, 5 and 10 t ha(-1) and trends in grain yield were not identifiable because of season-to-season variations. SOC and Olsen P increased for the first seven years of manure application and then remained constant. The residual effect of manure applied for four years only lasted another seven to eight years when assessed by yield, SOC and Olsen P. Mineral fertilizers provided the same annual rates of N and P as in 5 t ha(-1) manure and initially ,gave the same yield as manure, declining after nine years to about 80%. Therefore, manure applications could be made intermittently and nutrient requirements topped-up with fertilizers. Grain yields for sorghum with continuous manure were described well by correlations with rainfall and manure input only, if data were excluded for seasons with over 500 mm rainfall. A comprehensive simulation model should correctly describe crop losses caused by excess water.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plant root mucilages contain powerful surfactants that will alter the interaction of soil solids with water and ions, and the rates of microbial processes. The lipid composition of maize, lupin and wheat root mucilages was analysed by thin layer chromatography and gas chromatography-mass spectrometry. A commercially available phosphatidylcholine (lecithin), chemically similar to the phospholipid surfactants identified in the mucilages, was then used to evaluate its effects on selected soil properties. The lipids found in the mucilages were principally phosphatidylcholines, composed mainly of saturated fatty acids, in contrast to the lipids extracted from root tissues. In soil at low tension, lecithin reduced the water content at any particular tension by as much as 10 and 50% in soil and acid-washed sand, respectively. Lecithin decreased the amount of phosphate adsorption in soil and increased the phosphate concentration in solution by 10%. The surfactant also reduced net rates of ammonium consumption and nitrate production in soil. These experiments provide the first evidence we are aware of that plant-released surfactants will significantly modify the biophysical environment of the rhizosphere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The input to soils made by pollen and its subsequent mineralization has rarely been investigated from a soil microbiological point of view even though the small but significant quantities of C and N in pollen may make an important contribution to nutrient cycling. The relative resistance to decomposition of pollen exines (outer layers) has led to much of the focus of pollen in soil being on its preservation for archaeological and palaeo-ecological purposes. We have examined aspects of the chemical composition and decomposition of pollen from birch (Betula alba) and maize (Zea mays) in soil. The relatively large N contents, small C-to-N ratios and large water-soluble contents of pollen from both species indicated that they would be readily mineralized in soil. When added to soil and incubated at 16 degrees C an amount of C equivalent to 22-26% of the added pollen C was lost as CO2 within 22 days, with the Z. mays pollen decomposing faster. For B. alba pollen, the water-soluble fraction decomposed faster than the whole pollen and the insoluble fraction decomposed more slowly over 22 days. By contrast, there were no significant differences in the decomposition rates of the different fractions from Z. mays pollen. Solid-state C-13 nuclear magnetic resonance (NMR) revealed no gross chemical differences between the pollen of these two species, with strong resonances in the alkyl- and methyl-C region (0-45 p.p.m.) indicative of aliphatic compounds, the O-alkyl-C (60-90 p.p.m.) and the acetal- and ketal-C region (90-110 p.p.m.) indicative of polysaccharides, and the carbonyl-C region indicative of peptides and carboxylic acids. In addition, both pollens gave a small but distinct resonance at 55 p.p.m. attributed to N-alkyl-C. The resonances attributed to polysaccharides were lost completely or substantially reduced after decomposition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effectiveness of remediation of the highly acidic and transition metal polluted mine water discharge from the Wheal Jane Mine by the Wheal Jane Passive Treatment Plant is described. The success of the remediation required that all the system components work as predicted. The study shows considerable success in the removal of key toxic metals and clearly demonstrates the potential for natural attenuation of acid mine drainage, particularly iron oxidation, by microbial populations. The Wheal Jane Passive Treatment Plant provides the only experimental facility of its kind. (C) 2004 Elsevier B.V. All rights reserved.