998 resultados para charge migration


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of sodium surface species in the modification of a platinum (Pt) catalyst film supported on 8 mol% yttria-stabilised-zirconia (YSZ) was investigated under a flow of 20 kPa oxygen at 400 °C. Cyclic and linear sweep voltammetry were used to investigate the kinetics of the oxygen charge transfer reaction. The Pt/YSZ systems of both ‘clean’ and variable-coverage sodium-modified catalyst surfaces were also characterised using SEM, XPS and work function measurements using the Kelvin probe technique.

Samples with sodium coverage from 0.5 to 100% were used. It was found that sodium addition modifies the binding energy of oxygen onto the catalyst surface. Cyclic voltammetry experiments showed that higher overpotentials were required for oxygen reduction with increasing sodium coverage. In addition, sodium was found to modify oxygen storage and/or adsorption and diffusion increasing current densities at higher cathodic overpotential. Ex situ XPS measurements showed the presence of sodium hydroxide, carbonate and/or oxide species on the catalyst surface, while the Kelvin probe technique showed a decrease of approximately 250 meV in the work function of samples with more than 50% sodium coverage (compared to a nominally ‘clean’ sample).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using ion carbon beams generated by high intensity short pulse lasers we perform measurements of single shot mean charge equilibration in cold or isochorically heated solid density aluminum matter. We demonstrate that plasma effects in such matter heated up to 1 eV do not significantly impact the equilibration of carbon ions with energies 0.045-0.5 MeV/nucleon. Furthermore, these measurements allow for a first evaluation of semiempirical formulas or ab initio models that are being used to predict the mean of the equilibrium charge state distribution for light ions passing through warm dense matter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present ab initio quantum chemistry calculations for elastic scattering and the radiative charge transfer reaction process and collision rates for trapped ytterbium ions immersed in a quantum degenerate rubidium vapor.
The collision of the ion (or ions) with the quasiatom is the key mechanism to transfer quantum coherences between the systems. We use first-principles
quantum chemistry codes to obtain the potential surfaces and coupling terms for the two-body interaction of Yb^+ with Rb. We find that the low energy collision has an inelastic radiative charge transfer process in agreement with recent experiments.
The charge transfer cross section agrees well with the semiclassical Langevin model at higher energies but is dominated by resonances at submillikelvin temperatures.

Relevância:

20.00% 20.00%

Publicador: