994 resultados para bay of Seine


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dugong abundances in Moreton Bay (south-east Queensland) were estimated during six bi- monthly aerial surveys throughout 1995. Sampling intensity ranged between 20 and 80% for different sampling zones within the Bay, with a mean intensity of 40.5%. Population estimates for dugongs were corrected for perception bias ( the proportion of animals visible in the transect that were missed by observers), and standardised for availability bias ( the proportion of animals that were invisible due to water turbidity) with survey and species-specific correction factors. Population estimates for dugongs in Moreton Bay ranged from 503 +/- 64 (s.e.) in July to 1019 +/- 166 in January. The highest uncorrected count was 857 dugongs in December. This is greater than previous population estimates, suggesting that either previous surveys have underestimated abundance and/or that this population may have increased through recruitment, immigration, or a combination of both. The high degree of variation in population estimates between surveys may be due to temporal differences in distribution and herding behaviour. In winter, dugongs were found in smaller herds and were dispersed over a wider area than in summer. The Eastern Banks region of the bay supported 80 - 98% of the dugong population at any one time. Within this region, there were several dugong 'hot spots' that were visited repeatedly by large herds. These 'hot spots' contained seagrass communities that were dominated by species that dugongs prefer to eat. The waters of Rous Channel, South Passage and nearby oceanic waters are also frequently inhabited by dugongs in the winter months. Dugongs in other parts of Moreton Bay were at much lower densities than on the Eastern Banks.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aquatic ecosystem is the natural habitat of microorganisms including Vibrio and Aeromonas genus which are pathogenic to human and animals. In the present investigation the frequency of these bacteria and the enzymatic characteristics of 34 Vibrio alginolyticus strains isolated from bivalves harvested in Venice Lagoon (Italy) and Guanabara Bay (Brazil) were carried out from November 2003 to February 2004. The mussels' samples were submitted to enrichment in Alkaline Peptone Water (APW) added with 1% of sodium chloride (NaCl) and APW plus 3% NaCl incubated at 37 ºC for 18-24h. Following the samples were streaked onto TCBS Agar (Thiossulfate Citrate Bile Sucrose Agar) and the suspected colonies were submitted to biochemical characterization. Also, the Vibrio alginolyticus strains were evaluated to collagenase, elastase and chondroitinase production. The results showed the isolation of 127 microorganisms distributed as follows: 105 Vibrio strains such as V. alginolyticus (32.4%), V. harveyi (19%) and V. parahaemolyticus (7.6%), 20 Aeromonas strains and two Plesiomonas shigelloides were the main pathogens isolated. We observed the production of the three enzymes from V. alginolyticus strains considered as the main virulence factors of the bacteria, especially in cases of human dermatological infection.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The recruitment of 0-group plaice to sandy beach nursery grounds in Galway Bay was examined, using a Riley push-net, from February to June in 2005 and 2006. Sampling was carried out every two weeks on spring tides. Three beaches were sampled, Ballyloughan, Silverstrand and Glann na Ri. Archived 0-group plaice, for Ballyloughan and Silverstrand, from 2004, were processed. Results were compared to findings from a previous study carried out in 2002 and 2003 (Allen 2004). Otolith microstructure analysis was used to determine hatching dates, larval duration, settlement dates, post-larval age and daily growth rates of 0-group plaice in April and May 2005. Results were compared to a previous study (Allen 2004). Hatching dates in Galway Bay ranged from late January to early April in 2005. No significant difference in hatching dates was observed between years or between beaches sampled. Larval duration of 0-group plaice in Galway Bay ranged from 21 to 45 days for fish sampled in April and May 2005. No significant difference was observed in larval age between beaches sampled in Galway Bay or between years in April 2003 and 2005. A significant difference was observed between larval age and years in May 2003 and 2005, however no significant difference was observed between beaches. Settlement timing was calculated using push-net data and otolith microstructure analysis. Settlement of 0-group plaice in Galway Bay generally started in early March and finished in May. Settlement patterns, calculated using otolith microstructure analysis, in 2003 and 2005, were not significantly different to one another. There was also no difference in settlement patterns between the beaches sampled. Results from the present study showed no spatial difference in the pelagic life cycle stages of fish caught in April and May 2003 and 2005.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The economic value of flounder from shore angling around Ireland was assessed. Flounder catches from shore angling tournaments around Ireland were related to domestic and overseas shore angling expenditure in order to determine an economic value for the species. Temporal trends in flounder angling catches, and specimen (trophy) flounder reports were also investigated. Flounder was found to be the most caught shore angling species in competitions around Ireland constituting roughly one third of the shore angling competition catch although this did vary by area. The total value of flounder from shore angling tourism was estimated to be of the order of €8.4 million. No significant temporal trends in flounder angling catches and specimen reports were found. Thus there is no evidence from the current study for any decline in flounder stocks. The population dynamics of 0-group flounder during the early benthic stage was investigated at estuarine sites in Galway Bay, west of Ireland. Information was analysed from the March to June sampling period over five years (2002 to 2006). Spatial and temporal variations in settlement and population length structure were analysed between beach and river habitats and sites. Settlement of flounder began from late March to early May of each year, most commonly in April. Peak settlement was usually in April or early May. Settlement was recorded earlier than elsewhere, although most commonly was similar to the southern part of the UK and northern France. Settlement was generally later in tidal rivers than on sandy beaches. Abundance of 0-group flounder in Galway Bay did not exhibit significant inter -annual variability. 0-group flounder were observed in dense aggregations of up to 105 m'2, which were patchy in distribution. Highest densities of 0-group flounder were recorded in limnetic and oligohaline areas as compared with the lower densities in polyhaline and to a lesser extent mesohaline areas. Measurements to of salinity allowed the classification of beaches, and tidal river sections near the mouth, into a salinity based scheme for length comparisons. Beaches were classified as polyhaline,the lower section of rivers as mesohaline, and the middle and upper sections as oligohaline. Over the March to June sampling period 0-group flounder utilised different sections at different length ranges and were significantly larger in more upstream sections. During initial settlement in April, 0-group flounder of 8-10 mm (standard length, SL) were present in abundance on polyhaline sandy beaches. By about 10mm (SL), flounder were present in all polyhaline, mesohaline and (oligohaline) sections. 0-group flounder became absent or in insignificant numbers in polyhaline and mesohaline sections in a matter of weeks after first appearance. From April to June, 0-group flounder of 12-30mm (SL) were found in more upstream locations in the oligohaline sections. About one month (May or June) after initial settlement, 0-group flounder became absent from the oligohaline sections. Concurrently, flounder start to reappear in mesohaline and polyhaline areas at approximately 30mm (SL) in June. The results indicate 0-group flounder in the early benthic stage are associated with low salinity areas, but as they grow, this association diminishes. Results strongly suggest that migration of 0-group flounder between habitats takes place during the early benthic phase.