999 resultados para aorta pressure
Resumo:
Several methods have been described to measure intraocular pressure (IOP) in clinical and research situations. However, the measurement of time varying IOP with high accuracy, mainly in situations that alter corneal properties, has not been reported until now. The present report describes a computerized system capable of recording the transitory variability of IOP, which is sufficiently sensitive to reliably measure ocular pulse peak-to-peak values. We also describe its characteristics and discuss its applicability to research and clinical studies. The device consists of a pressure transducer, a signal conditioning unit and an analog-to-digital converter coupled to a video acquisition board. A modified Cairns trabeculectomy was performed in 9 Oryctolagus cuniculus rabbits to obtain changes in IOP decay parameters and to evaluate the utility and sensitivity of the recording system. The device was effective for the study of kinetic parameters of IOP, such as decay pattern and ocular pulse waves due to cardiac and respiratory cycle rhythm. In addition, there was a significant increase of IOP versus time curve derivative when pre- and post-trabeculectomy recordings were compared. The present procedure excludes corneal thickness and error related to individual operator ability. Clinical complications due to saline infusion and pressure overload were not observed during biomicroscopic evaluation. Among the disadvantages of the procedure are the requirement of anesthesia and the use in acute recordings rather than chronic protocols. Finally, the method described may provide a reliable alternative for the study of ocular pressure dynamic alterations in man and may facilitate the investigation of the pathogenesis of glaucoma.
Resumo:
We analyzed the effects of saline infusion for the maintenance of blood volume on pulmonary gas exchange in ischemia-reperfusion syndrome during temporary abdominal aortic occlusion in dogs. We studied 20 adult mongrel dogs weighing 12 to 23 kg divided into two groups: ischemia-reperfusion group (IRG, N = 10) and IRG submitted to saline infusion for the maintenance of mean pulmonary arterial wedge pressure between 10 and 20 mmHg (IRG-SS, N = 10). All animals were anesthetized and maintained on spontaneous ventilation. After obtaining baseline measurements, occlusion of the supraceliac aorta was performed by the inflation of a Fogarty catheter. After 60 min of ischemia, the balloon was deflated and the animals were observed for another 60 min of reperfusion. The measurements were made at 10 and 45 min of ischemia, and 5, 30, and 60 min of reperfusion. Pulmonary gas exchange was impaired in the IRG-SS group as demonstrated by the increase of the alveolar-arterial oxygen difference (21 ± 14 in IRG-SS vs 11 ± 8 in IRG after 60 min of reperfusion, P = 0.004 in IRG-SS in relation to baseline values) and the decrease of oxygen partial pressure in arterial blood (58 ± 15 in IRG-SS vs 76 ± 15 in IRG after 60 min of reperfusion, P = 0.001 in IRG-SS in relation to baseline values), which was correlated with the highest degree of pulmonary edema in morphometric analysis (0.16 ± 0.06 in IRG-SS vs 0.09 ± 0.04 in IRG, P = 0.03 between groups). There was also a smaller ventilatory compensation of metabolic acidosis after the reperfusion. We conclude that infusion of normal saline worsened the gas exchange induced by pulmonary reperfusion injury in this experimental model.
Resumo:
Previous studies have shown that the vascular reactivity of the mouse aorta differs substantially from that of the rat aorta in response to several agonists such as angiotensin II, endothelin-1 and isoproterenol. However, no information is available about the agonists bradykinin (BK) and DesArg9BK (DBK). Our aim was to determine the potential expression of kinin B1 and B2 receptors in the abdominal mouse aorta isolated from C57BL/6 mice. Contraction and relaxation responses to BK and DBK were investigated using isometric recordings. The kinins were unable to induce relaxation but concentration-contraction response curves were obtained by applying increasing concentrations of the agonists BK and DBK. These effects were blocked by the antagonists Icatibant and R-715, respectively. The potency (pD2) calculated from the curves was 7.0 ± 0.1 for BK and 7.3 ± 0.2 for DBK. The efficacy was 51 ± 2% for BK and 30 ± 1% for DBK when compared to 1 µM norepinephrine. The concentration-dependent responses of BK and DBK were markedly inhibited by the arachidonic acid inhibitor indomethacin (1 µM), suggesting a mediation by the cyclooxygenase pathway. These contractile responses were not potentiated in the presence of the NOS inhibitor L-NAME (1 mM) or endothelium-denuded aorta, indicating that the NO pathway is not involved. We conclude that the mouse aorta constitutively contains B1 and B2 subtypes of kinin receptors and that stimulation with BK and DBK induces contractile effect mediated by endothelium-independent vasoconstrictor prostanoids.
Resumo:
The severity of left ventricular (LV) dysfunction in rats with myocardial infarction (MI) varies widely. Because homogeneity in baseline parameters is essential for experimental investigations, a study was conducted to establish whether Doppler echocardiography (DE) could accurately identify animals with high LV end-diastolic pressure as a marker of LV dysfunction soon after MI. Direct measurements of LV end-diastolic pressure were made and DE was performed simultaneously 1 week after surgically induced MI (N = 16) or sham-operation (N = 17) in female Wistar rats (200 to 250 g). The ratio of peak early (E) to late (A) diastolic LV filling velocities and the ratio of E velocity to peak early (Em) diastolic myocardial velocity were the best predictors of high LV end-diastolic pressure (>12 mmHg) soon after MI. Cut-off values of 1.77 for the E/A ratio (P = 0.001) identified rats with elevated LV end-diastolic pressure with 90% sensitivity and 80% specificity. Cut-off values of 20.4 for the E/Em ratio (P = 0.0001) identified rats with elevated LV end-diastolic pressure with 81.8% sensitivity and 80% specificity. Moreover, E/A and E/Em ratios were the only echocardiographic parameters independently associated with LV end-diastolic pressure in multiple linear regression analysis. Therefore, DE identifies rats with high LV end-diastolic pressure soon after MI. These findings have implications for using serial DE in animal selection and in the assessment of their response to experimental therapies.
Resumo:
Disorders of the lipid metabolism may play a role in the genesis of abdominal aorta aneurysm. The present study examined the intravascular catabolism of chylomicrons, the lipoproteins that carry the dietary lipids absorbed by the intestine in the circulation in patients with abdominal aorta aneurysm. Thirteen male patients (72 ± 5 years) with abdominal aorta aneurysm with normal plasma lipid profile and 13 healthy male control subjects (73 ± 5 years) participated in the study. The method of chylomicron-like emulsions was used to evaluate this metabolism. The emulsion labeled with 14C-cholesteryl oleate and ³H-triolein was injected intravenously in both groups. Blood samples were taken at regular intervals over 60 min to determine the decay curves. The fractional clearance rate (FCR) of the radioactive labels was calculated by compartmental analysis. The FCR of the emulsion with ³H-triolein was smaller in the aortic aneurysm patients than in controls (0.025 ± 0.017 vs 0.039 ± 0.019 min-1; P < 0.05), but the FCR of14C-cholesteryl oleate of both groups did not differ. In conclusion, as indicated by the triglyceride FCR, chylomicron lipolysis is diminished in male patients with aortic aneurysm, whereas the remnant removal which is traced by the cholesteryl oleate FCR is not altered. The results suggest that defects in the chylomicron metabolism may represent a risk factor for development of abdominal aortic aneurysm.
Resumo:
Popular science has emphasized the risks of high sodium intake and many studies have confirmed that salt intake is closely related to hypertension. The present mini-review summarizes experiments about salt taste sensitivity and its relationship with blood pressure (BP) and other variables of clinical and familial relevance. Children and adolescents from control parents (N = 72) or with at least one essential hypertensive (EHT) parent (N = 51) were investigated. Maternal questionnaires on eating habits and vomiting episodes were collected. Offspring, anthropometric, BP, and salt taste sensitivity values were recorded and blood samples analyzed. Most mothers declared that they added "little salt" when cooking. Salt taste sensitivity was inversely correlated with systolic BP (SBP) in control youngsters (r = -0.33; P = 0.015). In the EHT group, SBP values were similar to control and a lower salt taste sensitivity threshold. Obese offspring of EHT parents showed higher SBP and C-reactive protein values but no differences in renin-angiotensin-aldosterone system activity. Salt taste sensitivity was correlated with SBP only in the non-obese EHT group (N = 41; r = 0.37; P = 0.02). Salt taste sensitivity was correlated with SBP in healthy, normotensive children and adolescents whose mothers reported significant vomiting during the first trimester (N = 18; r = -0.66; P < 0.005), but not in "non-vomiter offspring" (N = 54; r = -0.18; nonsignificant). There is evidence for a linkage between high blood pressure, salt intake and sensitivity, perinatal environment and obesity, with potential physiopathological implications in humans. This relationship has not been studied comprehensively using homogeneous methods and therefore more research is needed in this field.
Resumo:
Obstructive apnea (OA) can exert significant effects on renal sympathetic nerve activity (RSNA) and hemodynamic parameters. The present study focuses on the modulatory actions of RSNA on OA-induced sodium and water retention. The experiments were performed in renal-denervated rats (D; N = 9), which were compared to sham (S; N = 9) rats. Mean arterial pressure (MAP) and heart rate (HR) were assessed via an intrafemoral catheter. A catheter was inserted into the bladder for urinary measurements. OA episodes were induced via occlusion of the catheter inserted into the trachea. After an equilibration period, OA was induced for 20 s every 2 min and the changes in urine, MAP, HR and RSNA were recorded. Renal denervation did not alter resting MAP (S: 113 ± 4 vs D: 115 ± 4 mmHg) or HR (S: 340 ± 12 vs D: 368 ± 11 bpm). An OA episode resulted in decreased HR and MAP in both groups, but D rats showed exacerbated hypotension and attenuated bradycardia (S: -12 ± 1 mmHg and -16 ± 2 bpm vs D: -16 ± 1 mmHg and 9 ± 2 bpm; P < 0.01). The basal urinary parameters did not change during or after OA in S rats. However, D rats showed significant increases both during and after OA. Renal sympathetic nerve activity in S rats increased (34 ± 9%) during apnea episodes. These results indicate that renal denervation induces elevations of sodium content and urine volume and alters bradycardia and hypotension patterns during total OA in unconscious rats.
Resumo:
Even though frequency analysis of body sway is widely applied in clinical studies, the lack of standardized procedures concerning power spectrum estimation may provide unreliable descriptors. Stabilometric tests were applied to 35 subjects (20-51 years, 54-95 kg, 1.6-1.9 m) and the power spectral density function was estimated for the anterior-posterior center of pressure time series. The median frequency was compared between power spectra estimated according to signal partitioning, sampling rate, test duration, and detrending methods. The median frequency reliability for different test durations was assessed using the intraclass correlation coefficient. When increasing number of segments, shortening test duration or applying linear detrending, the median frequency values increased significantly up to 137%. Even the shortest test duration provided reliable estimates as observed with the intraclass coefficient (0.74-0.89 confidence interval for a single 20-s test). Clinical assessment of balance may benefit from a standardized protocol for center of pressure spectral analysis that provides an adequate relationship between resolution and variance. An algorithm to estimate center of pressure power density spectrum is also proposed.
Resumo:
The use of positive end-expiratory pressure (PEEP) or lung recruitment maneuvers (RM) to improve oxygenation in acute respiratory distress syndrome (ARDS) is used but it may reduce cardiac output (CO). Intermittent PEEP may avoid these complications. Our objective was to determine if variable PEEP compared with constant PEEP is capable of maintaining arterial oxygenation and minimizing hemodynamic alterations with or without RM. Eighteen dogs with ARDS induced by oleic acid were randomized into three equal groups: group 1, low variable PEEP; group 2, high variable PEEP, and group 3, RM + high variable PEEP. All groups were submitted to constant PEEP, followed by variable PEEP (PEEP was increased from 5 to 10 cmH2O in group 1, and from 5 to 18 cmH2O in the other two groups). PaO2 was higher in group 3 (356.2 ± 65.4 mmHg) than in group 1 (92.7 ± 29.7 mmHg) and group 2 (228.5 ± 72.4 mmHg), P < 0.05. PaO2 was maintained during variable PEEP except in group 2 (318.5 ± 82.9 at constant PEEP to 228.5 ± 72.4 at variable PEEP). There was a reduction in CO in group 3 after RM (3.9 ± 1.1 before to 2.7 ± 0.5 L·min-1·(m2)-1 after; P < 0.05), but there was not any difference between constant and variable PEEP periods (2.7 ± 0.5 and 2.4 ± 0.7 L·min-1·(m2)-1; P > 0.05. Variable PEEP is able to maintain PaO2 when performed in combination with RM in dogs with ARDS. After RM, CO was reduced and there was no relevant difference between the variable and constant PEEP periods.