995 resultados para angiogenic factor
Resumo:
The Drosophila transcription factor Prospero functions as a tumor suppressor, and it has been suggested that the human counterpart of Prospero, PROX1, acts similarly in human cancers. However, we show here that PROX1 promotes dysplasia in colonic adenomas and colorectal cancer progression. PROX1 expression marks the transition from benign colon adenoma to carcinoma in situ, and its loss inhibits growth of human colorectal tumor xenografts and intestinal adenomas in Apc(min/+) mice, while its transgenic overexpression promotes colorectal tumorigenesis. Furthermore, in intestinal tumors PROX1 is a direct and dose-dependent target of the beta-catenin/TCF signaling pathway, responsible for the neoplastic transformation. Our data underscore the complexity of cancer pathogenesis and implicate PROX1 in malignant tumor progression through the regulation of cell polarity and adhesion.
Resumo:
BACKGROUND: Cerebrovascular disease (CVD) is a global public health problem. CVD patients are at high risk of recurrent stroke and other atherothrombotic events. Prevalence of risk factors, comorbidities, utilization of secondary prevention therapies and adherence to guidelines all influence the recurrent event rate. We assessed these factors in 18,992 CVD patients within a worldwide registry of stable outpatients. METHODS: The Reduction of Atherothrombosis for Continued Health Registry recruited >68,000 outpatients (44 countries). The subjects were mainly recruited by general practitioners (44%) and internists (29%) if they had symptomatic CVD, coronary artery disease, peripheral arterial disease (PAD) and/or >or=3 atherothrombotic risk factors. RESULTS: The 18,992 CVD patients suffered a stroke (53.7%), transient ischemic attack (TIA) (27.7%) or both (18.5%); 40% had symptomatic atherothrombotic disease in >or=1 additional vascular beds: 36% coronary artery disease; 10% PAD and 6% both. The prevalence of risk factors at baseline was higher in the TIA subgroup than in the stroke group: treated hypertension (83.5/82.0%; p = 0.02), body mass index >or=30 (26.7/20.8%; p < 0.0001), hypercholesterolemia (65.1/52.1%; p < 0.0001), atrial fibrillation (14.7/11.9%; p < 0.0001) and carotid artery disease (42.3/29.7%; p < 0.0001). CVD patients received antiplatelet agents (81.7%), oral anticoagulants (17.3%), lipid-lowering agents (61.2%) and antihypertensives (87.9%), but guideline treatment targets were frequently not achieved (54.5% had elevated blood pressure at baseline, while 4.5% had untreated diabetes). CONCLUSIONS: A high percentage of CVD patients have additional atherothrombotic disease manifestations. The risk profile puts CVD patients, especially the TIA subgroup, at high risk for future atherothrombotic events. Undertreatment is common worldwide and adherence to guidelines needs to be enforced.
Resumo:
Members of the Sox gene family of transcription factors are defined by the presence of an 80 amino acid homology domain, the High Mobility Group (HMG) box. Here we report the cloning and initial analysis of murine Sox-13 . The 984 amino acids Sox-13 protein contains a single HMG box, a leucine zipper motif and a glutamine-rich stretch. These characteristics are shared with another member of the Sox gene family, Sox-6. High level embryonic expression of Sox-13 occurs uniquely in the arterial walls of 13.5 days post coitum (dpc) mice and later. Low level expression was observed in the inner ear of 13.5 dpc mice and in a limited number of cells in the thymus of 16.5 dpc mice, from which Sox-13 was originally cloned. At 18.5 dpc, Sox-13 is expressed in the tracheal epithelium below the vocal cord and in the hair follicles. The Sox-13 protein binds to the consensus HMG box motif, AACAAAG, but does not transactivate transcription through a concatamer of this motif. Sox-13, like other members of the Sox family likely plays an important role in development.
Resumo:
BACKGROUND: Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine produced by many tissues including pancreatic beta-cells. METHODS: This study investigates the impact of MIF on islet transplantation using MIF knock-out (MIFko) mice. RESULTS: Early islet function, assessed with a syngeneic marginal islet mass transplant model, was enhanced when using MIFko islets (P<0.05 compared with wild-type [WT] controls). This result was supported by increased in vitro resistance of MIFko islets to apoptosis (terminal deoxynucleotide tranferase-mediated dUTP nick-end labeling assay), and by improved glucose metabolism (lower blood glucose levels, reduced glucose areas under curve and higher insulin release during intraperitoneal glucose challenges, and in vitro in the absence of MIF, P<0.01). The beneficial impact of MIFko islets was insufficient to delay allogeneic islet rejection. However, the rejection of WT islet allografts was marginally delayed in MIFko recipients by 6 days when compared with WT recipient (P<0.05). This effect is supported by the lower activity of MIF-deficient macrophages, assessed in vitro and in vivo by cotransplantation of islet/macrophages. Leukocyte infiltration of the graft and donor-specific lymphocyte activity (mixed lymphocyte reaction, interferon gamma ELISPOT) were similar in both groups. CONCLUSION: These data indicate that targeting MIF has the potential to improve early function after syngeneic islet transplantation, but has only a marginal impact on allogeneic rejection.
Resumo:
BACKGROUND: Macrophage migration inhibitory factor (MIF) has emerged as a pivotal mediator of innate immunity and has been shown to be an important effector molecule in severe sepsis. Melioidosis, caused by Burkholderia pseudomallei, is an important cause of community-acquired sepsis in Southeast-Asia. We aimed to characterize the expression and function of MIF in melioidosis. METHODOLOGY AND PRINCIPAL FINDINGS: MIF expression was determined in leukocytes and plasma from 34 melioidosis patients and 32 controls, and in mice infected with B. pseudomallei. MIF function was investigated in experimental murine melioidosis using anti-MIF antibodies and recombinant MIF. Patients demonstrated markedly increased MIF mRNA leukocyte and MIF plasma concentrations. Elevated MIF concentrations were associated with mortality. Mice inoculated intranasally with B. pseudomallei displayed a robust increase in pulmonary and systemic MIF expression. Anti-MIF treated mice showed lower bacterial loads in their lungs upon infection with a low inoculum. Conversely, mice treated with recombinant MIF displayed a modestly impaired clearance of B. pseudomallei. MIF exerted no direct effects on bacterial outgrowth or phagocytosis of B. pseudomallei. CONCLUSIONS: MIF concentrations are markedly elevated during clinical melioidosis and correlate with patients' outcomes. In experimental melioidosis MIF impaired antibacterial defense.