992 resultados para amplified fragment length polymorphisms (AFLP)
Resumo:
Random amplified polymorphic DNA (RAPD) technique is a simple and reliable method to detect DNA polymorphism. Several factors can affect the amplification profiles, thereby causing false bands and non-reproducibility of assay. In this study, we analyzed the effect of changing the concentration of primer, magnesium chloride, template DNA and Taq DNA polymerase with the objective of determining their optimum concentration for the standardization of RAPD technique for genetic studies of Cuban Triatominae. Reproducible amplification patterns were obtained using 5 pmoL of primer, 2.5 mM of MgCl2, 25 ng of template DNA and 2 U of Taq DNA polymerase in 25 µL of the reaction. A panel of five random primers was used to evaluate the genetic variability of T. flavida. Three of these (OPA-1, OPA-2 and OPA-4) generated reproducible and distinguishable fingerprinting patterns of Triatominae. Numerical analysis of 52 RAPD amplified bands generated for all five primers was carried out with unweighted pair group method analysis (UPGMA). Jaccard's Similarity Coefficient data were used to construct a dendrogram. Two groups could be distinguished by RAPD data and these groups coincided with geographic origin, i.e. the populations captured in areas from east and west of Guanahacabibes, Pinar del Río. T. flavida present low interpopulation variability that could result in greater susceptibility to pesticides in control programs. The RAPD protocol and the selected primers are useful for molecular characterization of Cuban Triatominae.
Resumo:
HHV-6 is the etiological agent of Exanthem subitum which is considered the sixth most frequent disease in infancy. In immuno-compromised hosts, reactivation of latent HHV-6 infection may cause severe acute disease. We developed a Sybr Green Real Time PCR for HHV-6 and compared the results with nested conventional PCR. A 214 pb PCR derived fragment was cloned using pGEM-T easy from Promega system. Subsequently, serial dilutions were made in a pool of negative leucocytes from 10-6 ng/µL (equivalent to 2465.8 molecules/µL) to 10-9 (equivalent to 2.46 molecules/µL). Dilutions of the plasmid were amplified by Sybr Green Real Time PCR, using primers HHV3 (5' TTG TGC GGG TCC GTT CCC ATC ATA 3)'and HHV4 (5' TCG GGA TAG AAA AAC CTA ATC CCT 3') and by conventional nested PCR using primers HHV1 (outer): 5'CAA TGC TTT TCT AGC CGC CTC TTC 3'; HHV2 (outer): 5' ACA TCT ATA ATT TTA GAC GAT CCC 3'; HHV3 (inner) and HHV4 (inner) 3'. The detection threshold was determined by plasmid serial dilutions. Threshold for Sybr Green real time PCR was 24.6 molecules/µL and for the nested PCR was 2.46 molecules/µL. We chose the Real Time PCR for diagnosing and quantifying HHV-6 DNA from samples using the new Sybr Green chemistry due to its sensitivity and lower risk of contamination.