996 resultados para alkaline degradation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transformation of pesticides is directly related to the environmental conditions during application and transport of these compounds in the ecosystem. Rice fields include peculiar conditions, relatively high temperatures and wet conditions, leading to degradation processes, different from that observed in other agricultural systems. This article presents the degradation routes of some characteristic rice insecticides and herbicides under field conditions. A compilation of the pesticides that are usually applied during rice cultivation is included, with their main physico-chemical parameters. The stability of the pesticides by solid phase extraction systems during storage of rice samples is also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Degradation of reactive dye Remazol Brilliant Orange 3R (RBO) has been performed using photoeletrocatalysis. A biased potential is applied across a titanium dioxide thin-film photoelectrode illuminated by UV light. It is suggested that charges photogenerated at the electrode surface give rise to chlorine generation and powerful oxidants (OH) that causes the dye solution to decolorize. Rate constants calculated from color decay versus time reveal a first-order reaction up to 5.0×10-5 mol l-1 in dye concentration. The best experimental conditions were found to be pH 6.0 and 1.0 mol l-1 NaCl when the photoelectrode was biased at +1V (versus SCE). Almost complete mineralization of the dye content (70% TOC reduction) was achieved in a 3-h period using these conditions. Effects of other electrolytes, dye concentration and applied potentials also have been investigated and are discussed. © 2003 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this communication, we show that the growth of isolate H6 of the dermatophyte Trichophyton rubrum on non-buffered medium and under saturating phosphate conditions is dependent on the initial growth pH, with an apparent optimum at pH 4.0. In addition, irrespective of the initial growth pH, the pH of the medium altered during cultivation reaching values that ranged from 8.3 to 8.9. Furthermore, this isolate synthesized and secreted almost the same levels of an alkaline phosphatase with an apparent optimum pH ranging from 9.0 to 10.0 when grown on both low- and high-phosphate medium. Also, this alkaline phosphatase is activated by Mg2+ and is EDTA-sensitive. On the other hand, the very low levels of the enzyme retained by the mycelium grown on buffered medium at pH 5.0-5.2 suggest that this enzyme is encoded by an alkaline gene, i.e., a gene responsive to ambient pH signaling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sparfloxacin, a third generation fluoroquinolone derivative, is a potent antibacterial agent active against a wide range of Gram-positive and Gram-negative organisms including Streptococcus pneuinoniae, Staphylococcus aureus, methicillin resistant S. aureus, Legionella spp., Mycoplasina spp., Chlamydia spp. and Mycobacterium spp. A drawback of fluoroquinolones is their photoreactivity. Sparfloxacin has been studied in terms of therapeutic activities. However, there are few published of analytical methods being applied to sparfloxacin. The aim in this study was to determine the photodegradation products of sparfloxacin, when submitted to UV light, and to characterize two of these products, designated SPAX-PDP1 and SPAX-PDP2. An accelerated study of stability in methanol solution was carried out by exposing a solution of sparfloxacin to UV light (peak wavelength 290 nm) for 36 hours at room temperature. The products were analyzed by NMR spectrophotometry, IR spectrometry and mass spectrophotometry. The results suggest that the products isolated here could be used to estimate the degradation of sparfloxacin in a stability study. However, the low activity exhibited by UV-irradiated sparfloxacin is a source of concern that demands further investigation of the mechanism of its photodegradation mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is a growing body of evidence that melatonin and its oxidation product, N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK), have anti-inflammatory properties. From a nutritional point of view, the discovery of melatonin in plant tissues emphasizes the importance of its relationship with plant peroxidases. Here we found that the pH of the reaction mixture has a profound influence in the reaction rate and products distribution when melatonin is oxidized by the plant enzyme horseradish peroxidase. At pH 5.5, 1 mm of melatonin was almost completely oxidized within 2 min, whereas only about 3% was consumed at pH 7.4. However, the relative yield of AFMK was higher in physiological pH. Radical-mediated oxidation products, including 2-hydroxymelatonin, a dimer of 2-hydroxymelatonin and O-demethylated dimer of melatonin account for the fast consumption of melatonin at pH 5.5. The higher production of AFMK at pH 7.4 was explained by the involvement of compound III of peroxidases as evidenced by spectral studies. On the other hand, the fast oxidative degradation at pH 5.5 was explained by the classic peroxidase cycle. © 2007 The Authors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to determine alkaline phosphatase (ALP; E.C. 3.1.3.1) activity and major expression in homogenates obtained from different regions of Golden hamster epididymis, comprising the initial segment, head, body and tail, with concomitant research of this enzyme localization and activity in samples of tissues. These were collected from the same regions and investigated by histochemical conventional study performed on frozen histological sections. No significant differences in mean ALP activity, reported as U.100 mg-1 of tissue, were observed among the biological specimens collected from the epididymidis initial segment (0.92 ± 0.28 U.100 mg-1 tissue), head (1.07 ± 0.67 U.100 mg-1 tissue) and body (0.77 ± 0.23 U.100 mg-1 tissue). However, mean ALP activity was significantly higher in the epididymal tail (8.94 ± 0.40 U.100 mg-1 tissue) compared with the precedent segments. The findings suggested that ALP plays a significant role in the tail of the Golden hamster epididymidis, mediating androgenic segregation necessary to maintain the epithelial integrity. Furthermore, ALP acts on active transport of substances between the luminal fluid and spermatozoon membrane, and contrariwise. Thus, the high concentration of ALP in the epididymal tail helps to indicate the importance of this enzyme in the metabolism and maintenance of spermatozoa maturation and storage into the epididymidis luminal compartment, perhaps directly influencing the normal reproductive morphophysiology.