999 resultados para Yang, Jisheng, 1516-1555
Resumo:
Invocatio: I.N.J.
Resumo:
Diclofenac is one of most frequently detected compounds in the water cycle. In this work, the effect of initial concentration, liquid inclusion complexes with β-Cyclodextrins (β-CDs) on the photodegradation of diclofenac were studied. Six phototransformation products were detected by HPLC chromatograms. UV-absorption spectra of diclofenac and phototransformation products were determined. One of the phototransformation products was identified. The degradation followed pseudo-first-order kinetics. The experiment showed that irradiation of diclofenac in the presence of β-CDs increase photodegradation rate and determined the optimal molar ratio of diclofenac to β-CDs as 1:2. The reduced photohaemolytic activity of diclofenac in the presence of β-CDs may be attributed to the sequestering and stabilizing of the radical intermediates and /or photoproducts by complexation.
Resumo:
Resulting from ion displacement in a solid under pressure, piezoelectricity is an electrical polarization that can be observed in perovskite-type electronic ceramics, such as PbTiO3, which present cubic and tetragonal symmetries at different pressures. The transition between these crystalline phases is determined theoretically through the bulk modulus from the relationship between material energy and volume. However, the change in the material molecular structure is responsible for the piezoelectric effect. In this study, density functional theory calculations using the Becke 3-Parameter-Lee-Yang-Parr hybrid functional were employed to investigate the structure and properties associated with the transition state of the tetragonal-cubic phase change in PbTiO3 material.
Resumo:
An improved method based on reverse flow injection is proposed for determining sulfate concentration in the wet-process of phosphoric acid (WPA). The effect of reagent composition, flow rate, temperature, acid concentration, length of the reaction coil, and linear response range on the flow system is discussed in detail. Optimal conditions are established for determining sulfate in the WPA samples. Baseline drift is avoided by a periodic washing step with EDTA in an alkaline medium. A linear response is observed within a range of 20 - 360 mg L-1, given by the equation A = 0.0020C (mg L-1) + 0.0300, R² = 0.9991. The detection limit of the proposed method for sulfate analysis is 3 mg L-1, and the relative standard deviation (n = 12) of sulfate absorbance peak is less than 1.60%. This method has a rate of up to 29 samples per hour, and the results compare well with those obtained with gravimetric method.
Resumo:
Asian rust of soybean [Glycine max (L.) Merril] is one of the most important fungal diseases of this crop worldwide. The recent introduction of Phakopsora pachyrhizi Syd. & P. Syd in the Americas represents a major threat to soybean production in the main growing regions, and significant losses have already been reported. P. pachyrhizi is extremely aggressive under favorable weather conditions, causing rapid plant defoliation. Epidemiological studies, under both controlled and natural environmental conditions, have been done for several decades with the aim of elucidating factors that affect the disease cycle as a basis for disease modeling. The recent spread of Asian soybean rust to major production regions in the world has promoted new development, testing and application of mathematical models to assess the risk and predict the disease. These efforts have included the integration of new data, epidemiological knowledge, statistical methods, and advances in computer simulation to develop models and systems with different spatial and temporal scales, objectives and audience. In this review, we present a comprehensive discussion on the models and systems that have been tested to predict and assess the risk of Asian soybean rust. Limitations, uncertainties and challenges for modelers are also discussed.
Resumo:
Among the numerous approaches to food waste treatment, the food waste disposers method (FWDs), as a newcomer, has become slowly accepted by the general public owing to the worries about its impact on the existing sewage system. This paper aims to justify the role of FWDs in the process of urbanization in order to better prepare a city to take good care of the construction of its infrastructure and the solid waste treatment. Both the literatures and the case study help to confirm that FWDs has no negative effects on the wastewater treatment plant and it is also environmental friendly by reducing the greenhouse gas emissions. In the case study, the Lappeenranta waste water treatment plant has been selected in order to figure out the possible changes to a WWTP following the integration of FWDs: the observation shows only minor changes take place in a WWTP, in case of 25% application, like BOD up 7%, TSS up 6% and wastewater flowrate up 6%, an additional sludge production of 200 tons per year and the extra yield of methane up to 10000m3 per year; however, when the utilization rate of FWD is over 75%, BOD, TSS, and wastewater flowrate will experience more significant changes, thus exerting much pressure on the existing WWTP. FWDs can only be used in residential areas or cities equipped with consummate drainage network within the service sphere of WWTP, therefore, the relevant authority or government department should regulate the installation frequency of FWDs, while promoting the accessory application of FWDs. In the meanwhile, WWTP should improve their treatment process in order to expand their capacity for sludge treatment so as to stay in line with the future development of urban waste management.
Resumo:
Kirjallisuusarvostelu