993 resultados para Y(2)SiO(5)
Resumo:
Summary. The outcome of hepatitis C virus (HCV) infection and the likelihood of a sustained virological response (SVR) to antiviral therapy depends on both viral and host characteristics. In vitro studies demonstrated that bile acids (BA) interfere with antiviral interferon effects. We investigate the influence of plasma BA concentrations and an ABCB11 polymorphism associated with lower transporter expression on viral load and SVR. Four hundred and fifty-one Caucasian HCV-patients treated with PEG-interferon and ribavirin were included in the study. ABCB11 1331T>C was genotyped, and plasma BA levels were determined. The 1331C allele was slightly overrepresented in HCV-patients compared to controls. In HCV-patients, a significant difference between patients achieving SVR vs non-SVR was observed for HCV-2/3 (5 vs 9 μm; P = 0.0001), while median BA levels in HCV-1 were marginally elevated. Normal BA levels <8 μm were significantly associated with SVR (58.3%vs 36.3%; OR 2.48; P = 0.0001). This difference was significant for HCV-2/3 (90.7%vs 67.6%; P = 0.002) but marginal in HCV-1 (38.7%vs 27.8%; P = 0.058). SVR rates were equivalent between ABCB11 genotypes for HCV-1, but increased for HCV-2/3 (TT 100%vs CC 78%; OR 2.01; P = 0.043). IL28B genotype had no influence on these associations. No correlation between BA levels and HCV RNA was detected for any HCV genotype. The higher allelic frequency of ABCB11 1331C in HCV-patients compared to controls may indirectly link increased BA to HCV chronicity. Our data support a role for BA as host factor affecting therapy response in HCV-2/3 patients, whereas a weaker association was found for HCV-1.
Resumo:
The TNF-related apoptosis inducing ligand (TRAIL)/TRAIL receptor system participates in crucial steps in immune cell activation or differentiation. It is able to inhibit proliferation and activation of T cells and to induce apoptosis of neurons and oligodendrocytes, and seems to be implicated in autoimmune diseases. Thus, TRAIL and TRAIL receptor genes are potential candidates for involvement in susceptibility to multiple sclerosis (MS). To test whether single-nucleotide polymorphisms (SNPs) in the human genes encoding TRAIL, TRAILR-1, TRAILR-2, TRAILR-3 and TRAILR-4 are associated with MS susceptibility, we performed a candidate gene case-control study in the Spanish population. 59 SNPs in the TRAIL and TRAIL receptor genes were analysed in 628 MS patients and 660 controls, and validated in an additional cohort of 295 MS patients and 233 controls. Despite none of the SNPs withstood the highly conservative Bonferroni correction, three SNPs showing uncorrected p values<0.05 were successfully replicated: rs4894559 in TRAIL gene, p = 9.8×10(-4), OR = 1.34; rs4872077, in TRAILR-1 gene, p = 0.005, OR = 1.72; and rs1001793 in TRAILR-2 gene, p = 0.012, OR = 0.84. The combination of the alleles G/T/A in these SNPs appears to be associated with a reduced risk of developing MS (p = 2.12×10(-5), OR = 0.59). These results suggest that genes of the TRAIL/TRAIL receptor system exerts a genetic influence on MS.