997 resultados para Wooden-frame buildings


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem is general: modern architects and engineers are trying to understand historic structures using the wrong theoretical frame, the classic (elastic) thery of structures developed in the 19th Century for iron and stell, and in the 20th century for reinforced concrete, disguised with "modern" computer packages, mainly FEM, but also others. Masonry is an essentially different material, and the structural equations must be adapted accordingly. It is not a matter of "taste" or "opinion", and the consequences are before us. Since, say 1920s, historic monuments have suffered the aggression of generations of archietcts and engineers, trying to transform masonry in reinfored concrete or steel. The damage to the monuments and the expense has been, and is, enormous. However, as we have an adequate theory (modern limit analysis of masonry structures, Heyman 1966) which encompasses the "old theory" used successfully by the 18th and 19th Century practical engineers (from Perronet to Sejourné), it is a matter of "Ethics" not to use the wrong approach. It is also "contra natura" to modify the material masonry with indiscriminate injections, stitchings, etc. It is insane to consider, suddenly, that buildings which are Centuries or milennia old, are suddenly in danger of collapse. Maintenance is necessary but not the actual destruction of the constructive essence of the monument. A cocktail of "ignorance, fear and greed" is acting under the best of intentions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tras el devastador terremoto del 12 de enero de 2010 en Puerto Príncipe, Haití, las autoridades locales, numerosas ONGs y organismos nacionales e internacionales están trabajando en el desarrollo de estrategias para minimizar el elevado riesgo sísmico existente en el país. Para ello es necesario, en primer lugar, estimar dicho riesgo asociado a eventuales terremotos futuros que puedan producirse, evaluando el grado de pérdidas que podrían generar, para dimensionar la catástrofe y actuar en consecuencia, tanto en lo referente a medidas preventivas como a adopción de planes de emergencia. En ese sentido, este Trabajo Fin de Master aporta un análisis detallado del riesgo sísmico asociado a un futuro terremoto que podría producirse con probabilidad razonable, causando importantes daños en Puerto Príncipe. Se propone para ello una metodología de cálculo del riesgo adaptada a los condicionantes de la zona, con modelos calibrados empleando datos del sismo de 2010. Se ha desarrollado en el marco del proyecto de cooperación Sismo-Haití, financiado por la Universidad Politécnica de Madrid, que comenzó diez meses después del terremoto de 2010 como respuesta a una petición de ayuda del gobierno haitiano. El cálculo del riesgo requiere la consideración de dos inputs: la amenaza sísmica o movimiento esperado por el escenario definido (sismo de cierta magnitud y localización) y los elementos expuestos a esta amenaza (una clasificación del parque inmobiliario en diferentes tipologías constructivas, así como su vulnerabilidad). La vulnerabilidad de estas tipologías se describe por medio de funciones de daño: espectros de capacidad, que representan su comportamiento ante las fuerzas horizontales motivadas por los sismos, y curvas de fragilidad, que representan la probabilidad de que las estructuras sufran daños al alcanzar el máximo desplazamiento horizontal entre plantas debido a la mencionada fuerza horizontal. La metodología que se propone especifica determinadas pautas y criterios para estimar el movimiento, asignar la vulnerabilidad y evaluar el daño, cubriendo los tres estados del proceso. Por una parte, se consideran diferentes modelos de movimiento fuerte incluyendo el efecto local, y se identifican los que mejor ajustan a las observaciones de 2010. Por otra se clasifica el parque inmobiliario en diferentes tipologías constructivas, en base a la información extraída en una campaña de campo y utilizando además una base de datos aportada por el Ministerio de Obras Públicas de Haití. Ésta contiene información relevante de todos los edificios de la ciudad, resultando un total de 6 tipologías. Finalmente, para la estimación del daño se aplica el método capacidad-demanda implementado en el programa SELENA (Molina et al., 2010). En primer lugar, utilizado los datos de daño del terremoto de 2010, se ha calibrado el modelo propuesto de cálculo de riesgo sísmico: cuatro modelos de movimiento fuerte, tres modelos de tipo de suelo y un conjunto de funciones de daño. Finalmente, con el modelo calibrado, se ha simulado un escenario sísmico determinista correspondiente a un posible terremoto con epicentro próximo a Puerto Príncipe. Los resultados muestran que los daños estructurales serán considerables y podrán llevar a pérdidas económicas y humanas que causen un gran impacto en el país, lo que pone de manifiesto la alta vulnerabilidad estructural existente. Este resultado será facilitado a las autoridades locales, constituyendo una base sólida para toma de decisiones y adopción de políticas de prevención y mitigación del riesgo. Se recomienda dirigir esfuerzos hacia la reducción de la vulnerabilidad estructural - mediante refuerzo de edificios vulnerables y adopción de una normativa sismorresistente- y hacia el desarrollo de planes de emergencia. Abstract After the devastating 12 January 2010 earthquake that hit the city of Port-au-Prince, Haiti, strategies to minimize the high seismic risk are being developed by local authorities, NGOs, and national and international institutions. Two important tasks to reach this objective are, on the one hand, the evaluation of the seismic risk associated to possible future earthquakes in order to know the dimensions of the catastrophe; on the other hand, the design of preventive measures and emergency plans to minimize the consequences of such events. In this sense, this Master Thesis provides a detailed estimation of the damage that a possible future earthquake will cause in Port-au-Prince. A methodology to calculate the seismic risk is proposed, adapted to the study area conditions. This methodology has been calibrated using data from the 2010 earthquake. It has been conducted in the frame of the Sismo-Haiti cooperative project, supported by the Technical University of Madrid, which started ten months after the 2010 earthquake as an answer to an aid call of the Haitian government. The seismic risk calculation requires two inputs: the seismic hazard (expected ground motion due to a scenario earthquake given by magnitude and location) and the elements exposed to the hazard (classification of the building stock into building typologies, as well as their vulnerability). This vulnerability is described through the damage functions: capacity curves, which represent the structure performance against the horizontal forces caused by the seisms; and fragility curves, which represent the probability of damage as the structure reaches the maximum spectral displacement due to the horizontal force. The proposed methodology specifies certain guidelines and criteria to estimate the ground motion, assign the vulnerability, and evaluate the damage, covering the whole process. Firstly, different ground motion prediction equations including the local effect are considered, and the ones that have the best correlation with the observations of the 2010 earthquake, are identified. Secondly, the classification of building typologies is made by using the information collected during a field campaign, as well as a data base provided by the Ministry of Public Works of Haiti. This data base contains relevant information about all the buildings in the city, leading to a total of 6 different typologies. Finally, the damage is estimated using the capacity-spectrum method as implemented in the software SELENA (Molina et al., 2010). Data about the damage caused by the 2010 earthquake have been used to calibrate the proposed calculation model: different choices of ground motion relationships, soil models, and damage functions. Then, with the calibrated model, a deterministic scenario corresponding to an epicenter close to Port-au-Prince has been simulated. The results show high structural damage, and therefore, they point out the high structural vulnerability in the city. Besides, the economic and human losses associated to the damage would cause a great impact in the country. This result will be provided to the Haitian Government, constituting a scientific base for decision making and for the adoption of measures to prevent and mitigate the seismic risk. It is highly recommended to drive efforts towards the quality control of the new buildings -through reinforcement and construction according to a seismic code- and the development of emergency planning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Brazil, a low-latitude country characterized by its high availability and uniformity of solar radiation, the use of PV solar energy integrated in buildings is still incipient. However, at the moment there are several initiatives which give some hints that lead to think that there will be a change shortly. In countries where this technology is already a daily reality, such as Germany, Japan or Spain, the recommendations and basic criteria to avoid losses due to orientation and tilt are widespread. Extrapolating those measures used in high latitudes to all regions, without a previous deeper analysis, is standard practice. They do not always correspond to reality, what frequently leads to false assumptions and may become an obstacle in a country which is taking the first step in this area. In this paper, the solar potential yield for different surfaces in Brazilian cities (located at latitudes between 0° and 30°S) are analyzed with the aim of providing the necessary tools to evaluate the suitability of the buildings’ envelopes for photovoltaic use

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the year 1999 approves the Law of Construction Building (LOE, in Spanish) to regulate a sector such as construction, which contained some shortcomings from the legal point of view. Currently, the LOE has been in force 12 years, changing the spanish world of the construction, due to influenced by internationalization. Within the LOE, there regulating the different actors involved in the construction building, as the Projects design, the Director of Construction, the developer, The builder, Director of execution of the construction (actor only in Spain, similar as construcion engineer and abroad in), control entities and the users, but lacks figure Project manager will assume the delegation of the promoter helping and you organize, direct and management the process. This figure assumes that the market and contracts are not legally regulated in Spain, then should define and establish its regulation in the LOE. (Spain Construction Law) The translation in spanish of the words "Project Manager is owed to Professor Rafael de Heredia in his book Integrated Project Management, as agent acting on behalf of the organization and promoter assuming control of the project, ie Integraded Project Management . Already exist in Spain, AEDIP (Spanish Association Integrated of Project Construction management) which comprises the major companies in “Project Management” in Spain, and MeDIP (Master in Integrated Construction Project) the largest and most advanced studies at the Polytechnic University of Madrid, in "Construction Project Management" they teach which is also in Argentina. The Integrated Project ("Project Management") applied to the construction process is a methodological technique that helps to organize, control and manage the resources of the promoters in the building process. When resources are limited (which is usually most situations) to manage them efficiently becomes very important. Well, we find that in this situation, the resources are not only limited, but it is limited, so a comprehensive control and monitoring of them becomes not only important if not crucial. The alternative of starting from scratch with a team that specializes in developing these follow directly intervening to ensure that scarce resources are used in the best possible way requires the use of a specific methodology (Manual DIP, Matrix Foreign EDR breakdown structure EDP Project, Risk Management and Control, Design Management, et ..), that is the methodology used by "Projects managers" to ensure that the initial objectives of the promoters or investors are met and all actors in process, from design to construction company have the mind aim of the project will do, trying to get their interests do not prevail over the interests of the project. Among the agents listed in the building process, "Project Management" or DIPE (Director Comprehensive building process, a proposed name for possible incorporation into the LOE, ) currently not listed as such in the LOE (Act on Construction Planning ), one of the agents that exist within the building process is not regulated from the legal point of view, no obligations, ie, as is required by law to have a project, a builder, a construction management, etc. DIPE only one who wants to hire you as have been advanced knowledge of their services by the clients they have been hiring these agents, there being no legal obligation as mentioned above, then the market is dictating its ruling on this new figure, as if it were necessary, he was not hired and eventually disappeared from the building process. As the aim of this article is regular the process and implement the name of DIPE in the Spanish Law of buildings construction (LOE)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The need of the Bourbon monarchy to build a Naval Base in the Bay of Cartagena (Spain) during the eighteenth century, implied performing various actions on the environment which allowed the construction of the new dock. One of the priority actions was the transformation of the watershed of the streams that flowed into Mandaraches´s sea. For this reason, a dike was designed and constructed in the northern part of the city. The design of this great work, which was designed as a fortification of the city, was subject to considerable uncertainties. Its proximity to the city involved the demolition of several buildings in the San Roque´s neighborhood. The greater or lesser number of affected buildings and the value of the just indemnification for the expropriation of them, become decisive factors to determine if the work was viable for the Royal Estate or not.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nearly 3000 slaughterhouses (74% of them public facilities) were built in Spain during the last decades of the nineteenth century and the first half of the twentieth century. The need to comply with new technical requirements and regulations on the hygiene of the meat passed in the 70s and the gradual replacement of public facilities by larger and more modern private slaughterhouses have subsequently led to the closure and abandonment of many of these buildings. Public slaughterhouses generally consisted of several single-storey and open-plan buildings located around a courtyard. Although originally they were preferably located on the outskirts of the towns, many slaughterhouses are now placed inside the built up areas, due to the urban development. The present work aims to contribute to a better understanding of these agro-industrial buildings and to provide ideas for their conservation and reuse. A review on the historical evolution and the architectural features of the public slaughterhouses in Spain is presented and different examples of old vacant slaughterhouses reused to accommodate libraries, offices, community centres, exhibition halls or sports centres, among others, are shown in the paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A number of short-to-mid height RC buildings with wide beams have been constructed in moderate-seismicity areas of Spain. The seismic behavior in the direction of the wide beams appears to be deficient because of low lateral strength, low ductility of the wide beams, big strut compressive forces inside the column-beam connections, and unreliable contribution of the spandrel zones of the wide beams. In the orthogonal direction, the behavior is worse since only the joists and the façade beams contribute to the lateral resistance. The objective is to assess the seismic capability of these structures; further research will involve proposing retrofit strategies. The research approach consists of selecting a number of representative buildings and evaluating their vulnerability by code-type, push-over and dynamic analyses. The cooperation of the masonry infill walls is accounted for. The main conclusion is that the seismic behavior of these buildings is inadequate in most of the situations.