999 resultados para Wear-Ever Preserving Kettle.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the temperature and contact pressure conditions in hot stamped channels of boron steel. Hot stamping has been used for many years to produce high strength structural auto-motive components. The high tensile strengths achievable by hot stamping is beneficial where the intrusion during a vehicle crash is not desirable – e.g. for the vehicle occupant compartment. How-ever, the high blank temperatures and high temperature cycling causes a large amount of wear in the tooling. These conditions have led to high tool failures and die maintenance costs. Thus, un-derstanding the main causes of wear behaviour in the hot stamping process is of high interest to hot stampers.
To this aim, a generic 2D thermo-mechanical finite element model of a hat-shaped crash formed hot stamped component was developed (based on the authors previous hot stamp model), and a modified phase transformation model based on Scheil’s additive principle has been applied. The model was created in the finite element software ABAQUS Standard V6.13, including convection and radiation when the component was transferred from furnace to the tool as well as the air-cooling process. A USDFLD subroutine was used to model the phase transformation and a HET-VAL subroutine was used to model the latent heat. Contact heat conductance was a function of the pressure.
The authors have used techniques from their previous work on tool wear estimation for cold stamping to estimate the contact pressure on the tooling, and the amount of sliding that occurs over the tooling, and the corresponding tooling temperature. This data provides a unique data set to understand the wear on the tooling, and will eventually lead to a model for estimating tooling life.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The specific wear rate and friction coefficient of a pearlitic microstructure subjected to different abrasive environments (i.e. SiC and alumina) were examined. A CSM high temperature pin-on-disc tribometer was used to simulate the two-body abrasive condition (i.e. the metallic surface abrading against the abrasive particles). The characteristics of the abrasive particles (i.e. particle size and density) revealed a significant impact on the amount of material loss. The specific wear rate of the pearlitic microstructure decreased with a reduction in the abrasive particle size, irrespective of the particle type. In addition, distinct particle deterioration mechanisms were observed during the abrasion process, which was largely determined by the abrasive particle size. Attrition, shelling and fracture were some of the dominant particle deterioration mechanisms occurring in both of the abrasive environments. SEM and EDX analysis on the wear debris displayed a unique metallic chip formation with respect to the particle type. Furthermore, the abrading efficiency (i.e. threshold level) of the abrasive particles was identified by means of interrupted abrasive wear tests. The dense packing nature of the alumina abrasive particles resulted in a significantly higher material removal rate than the SiC abrasive environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The abrasive wear resistance of four distinct metallurgical steel microstructures - bainite, pearlite, martensite and tempered martensite, with similar hardness levels was investigated. A pin-on-disc tribometer was used to simulate the two-body abrasive condition (i.e. the metallic surface abrading against the silicon carbide abrasive particles) and evaluate the specific wear rate of the microstructures. Each microstructure had a unique response towards the abrasion behaviour and this was largely evident in the friction curve. However, the multi-phase microstructures (i.e. bainite and pearlite) demonstrated better abrasion resistance than the single-phase microstructures (i.e. martensite and tempered martensite). Abrasion induced microstructural changes at the deformed surfaces were studied using sub-surface and topographical techniques. The properties of these layers (i.e. surface profile measurements) determined the amount of material loss for each microstructure. These were directly linked to the single-wear track analysis that highlighted a marked difference in their mode of material removal. Ploughing and wedge formation modes were dominant in the case of bainite and pearlite microstructures, whereas the cutting mode could be attributed to the higher material loss in the single-phase microstructures. The combination of brittle and ductile phases in the multi-phase microstructure matrix could be one of the driving factors for their superior abrasion resistance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanostructured super bainitic and quenching-partitioning (Q&P) martensitic steels with a significant amount of retained austenite obtained by low temperature bainitic transformation and Q&P respectively were studied to explore the effect of retained austenite on stirring wear resistance. The results suggest that the Q&P martensitic steel significantly enhanced the hardness of the worn surface (from 674 to 762 HV1) and increased the thickness of the deformed layer (,3.3 mm), compared to the nanostructured bainitic steel. The underlying reason is that the Q&P martensitic steel has a higher stability of retained austenite thereby providing a superior transformation induced plasticity effect to increase surface hardness and reduce wear rate during the wear process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study examines the effect of sliding speed and surface temperature on the wear behavior of an unlubricated mild steel-tool steel contact pair using the pin-on-disc test. The operating conditions and contact pair are of interest to the automotive sheet metal stamping industry and the broader metal forming community, where high contact pressures and moderate forming speeds can result in significant frictional heating and thus affect tool life. It will be shown that, while adhesive wear is dominant at the tool steel surface for all sliding speeds examined, the adhesive wear rate is very sensitive to sliding speed during slow speed conditions but relatively insensitive to sliding speed during higher speed conditions. These higher sliding speeds result in high frictional heating, however, the effect of increasing bulk temperature results in a transition from adhesive wear to material removal-dominated mechanisms. It is concluded that there is a distinct difference in the wear response for comparable surface temperature and bulk temperature conditions, at the low to moderate sliding speeds and temperatures examined in this study. The SEM and profilometry analysis show that the technique of increasing sliding speed to replicate bulk temperature conditions (or vice versa), may not result in equivalent wear rates and mechanisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: This paper presents drinking patterns in a prospective study of a population-based cohort of 1570 pregnant women using a combination of dose and timing to give best estimates of prenatal alcohol exposure (PAE). Novel assessments include women's special occasion drinking and alcohol use prior to pregnancy recognition.

METHODS: Information on up to nine types of alcoholic drink, with separate frequencies and volumes, including drinking on special occasions outside a 'usual' pattern, was collected for the periconceptional period and at four pregnancy time points. Weekly total and maximum alcohol consumption on any one occasion was calculated and categorised. Drinking patterns are described in the context of predictive maternal characteristics.

RESULTS: 41.3 % of women did not drink during pregnancy, 27 % drank in first trimester only; most of whom stopped once they realised they were pregnant (87 %). When compared to women who abstained from alcohol when pregnant, those who drank in the first trimester only were more likely to have an unplanned pregnancy and not feel the effects of alcohol quickly. Almost a third of women continued to drink alcohol at some level throughout pregnancy (27 %), around half of whom never drank more than at low or moderate levels. When compared with abstainers and to women who only drank in trimester one, those who drank throughout pregnancy tended to be in their early to mid-thirties, smoke, have a higher income and educational attainment. Overall, almost one in five women (18.5 %) binge drank prior to pregnancy recognition, a third of whom were identified with a question about 'special occasion' drinking. Women whose age at first intoxication was less than 18 years (the legal drinking age in Australia), were significantly more likely to drink in pregnancy and at binge levels prior to pregnancy recognition.

CONCLUSIONS: We have identified characteristics of pregnant women who either abstain, drink until pregnancy awareness or drink throughout pregnancy. These may assist in targeting strategies to enhance adherence to an abstinence policy and ultimately allow for appropriate follow-up and interpretation of adverse child outcomes. Our methodology also produced important information to reduce misclassification of occasional binge drinking episodes and ensure clearly defined comparison groups.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the current study, a high-carbon, high-alloy steel (0.79 pct C, 1.5 pct Si, 1.98 pct Mn, 0.98 pct Cr, 0.24 pct Mo, 1.06 pct Al, and 1.58 pct Co in wt pct) was subjected to an isothermal bainitic transformation at a temperature range of 473 K to 623 K (200 °C to 350 °C), resulting in different fully bainitic microstructures consisting of bainitic ferrite and retained austenite. With a decrease in the transformation temperature, the microstructure was significantly refined from ~300 nm at 623 K (350 °C) to less than 60 nm at 473 K (200 °C), forming nanostructured bainitic microstructure. In addition, the morphology of retained austenite was progressively altered from film + blocky to an exclusive film morphology with a decrease in the temperature. This resulted in an enhanced wear resistance in nanobainitic microstructures formed at low transformation temperature, e.g., 473 K (200 °C). Meanwhile, it gradually deteriorated with an increase in the phase transformation temperature. This was mostly attributed to the retained austenite characteristics (i.e., thin film vs blocky), which significantly altered their mechanical stability. The presence of blocky retained austenite at high transformation temperature, e.g., 623 K (350 °C) resulted in an early onset of TRIPing phenomenon during abrasion. This led to the formation of coarse martensite with irregular morphology, which is more vulnerable to crack initiation and propagation than that of martensite formed from the thin film austenite, e.g., 473 K (200 °C). This resulted in a pronounced material loss for the fully bainitic microstructures transformed at high temperature, e.g., 623 K (350 °C), leading to distinct sub-surface layer and friction coefficient curve characteristics. A comparison of the abrasive behavior of the fully bainitic microstructure formed at 623 K (350 °C) and fully pearlitic microstructure demonstrated a detrimental effect of blocky retained austenite with low mechanical stability on the two-body abrasion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, the tool wear and surface integrity during machining of wrought and Selective LaserMelted (SLM) titanium alloy (after heat treatment) are studied. Face turning trails were carried out onboth the materials at different cutting speeds of 60,120 and 180 m/min. Cutting tools and machinedspecimens collected are characterized using scanning electron microscope, surface profiler and opticalmicroscope to study the tool wear, machined surface quality and machining induced microstructuralalterations. It was found that high cutting speeds lead to rapid tool wear during machining of SLMTi-6Al-4V materials. Rapid tool wear observed at high cutting speeds in machining SLM Ti-6Al-4Vresulted in damaging the surface integrity by 1) Deposition of chip/work material on the machinedsurface giving rise to higher surface roughness and 2) Increasing the depth of plastic deformationon the machined sub surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The introduction of online social networks (OSN) has transformed the way people connect and interact with each other as well as share information. OSN have led to a tremendous explosion of network-centric data that could be harvested for better understanding of interesting phenomena such as sociological and behavioural aspects of individuals or groups. As a result, online social network service operators are compelled to publish the social network data for use by third party consumers such as researchers and advertisers. As social network data publication is vulnerable to a wide variety of reidentification and disclosure attacks, developing privacy preserving mechanisms are an active research area. This paper presents a comprehensive survey of the recent developments in social networks data publishing privacy risks, attacks, and privacy-preserving techniques. We survey and present various types of privacy attacks and information exploited by adversaries to perpetrate privacy attacks on anonymized social network data. We present an in-depth survey of the state-of-the-art privacy preserving techniques for social network data publishing, metrics for quantifying the anonymity level provided, and information loss as well as challenges and new research directions. The survey helps readers understand the threats, various privacy preserving mechanisms, and their vulnerabilities to privacy breach attacks in social network data publishing as well as observe common themes and future directions.