999 resultados para WESTERN HEMISPHERE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

During June, July and August 2006 five aircraft took part in a campaign over West Africa to observe the aerosol content and chemical composition of the troposphere and lower stratosphere as part of the African Monsoon Multidisciplinary Analysis (AMMA) project. These are the first such measurements in this region during the monsoon period. In addition to providing an overview of the tropospheric composition, this paper provides a description of the measurement strategy (flights performed, instrumental payloads, wing-tip to wing-tip comparisons) and points to some of the important findings discussed in more detail in other papers in this special issue. The ozone data exhibits an "S" shaped vertical profile which appears to result from significant losses in the lower troposphere due to rapid deposition to forested areas and photochemical destruction in the moist monsoon air, and convective uplift of ozone-poor air to the upper troposphere. This profile is disturbed, particularly in the south of the region, by the intrusions in the lower and middle troposphere of air from the southern hemisphere impacted by biomass burning. Comparisons with longer term data sets suggest the impact of these intrusions on West Africa in 2006 was greater than in other recent wet seasons. There is evidence for net photochemical production of ozone in these biomass burning plumes as well as in urban plumes, in particular that from Lagos, convective outflow in the upper troposphere and in boundary layer air affected by nitrogen oxide emissions from recently wetted soils. This latter effect, along with enhanced deposition to the forested areas, contributes to a latitudinal gradient of ozone in the lower troposphere. Biogenic volatile organic compounds are also important in defining the composition both for the boundary layer and upper tropospheric convective outflow. Mineral dust was found to be the most abundant and ubiquitous aerosol type in the atmosphere over Western Africa. Data collected within AMMA indicate that injection of dust to altitudes favourable for long-range transport (i.e. in the upper Sahelian planetary boundary layer) can occur behind the leading edge of mesoscale convective system (MCS) cold-pools. Research within AMMA also provides the first estimates of secondary organic aerosols across the West African Sahel and have shown that organic mass loadings vary between 0 and 2 μg m−3 with a median concentration of 1.07 μg m−3. The vertical distribution of nucleation mode particle concentrations reveals that significant and fairly strong particle formation events did occur for a considerable fraction of measurement time above 8 km (and only there). Very low concentrations were observed in general in the fresh outflow of active MCSs, likely as the result of efficient wet removal of aerosol particles due to heavy precipitation inside the convective cells of the MCSs. This wet removal initially affects all particle size ranges as clearly shown by all measurements in the vicinity of MCSs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies have shown that sea-ice in the Sea of Okhotsk can be affected by local storms; in turn, the resultant sea-ice changes can affect the downstream development of storm tracks in the Pacific and possibly dampen a pre-existing North Atlantic Oscillation (NAO) signal in late winter. In this paper, a storm tracking algorithm was applied to the six hourly horizontal winds from the National Centers for Environmental Prediction (NCEP) reanalysis data from 1978(9) to 2007 and output from the atmospheric general circulation model (AGCM) ECHAM5 forced by sea-ice anomalies in the Sea of Okhotsk. The life cycle response of storms to sea-ice anomalies is investigated using various aspects of storm activity—cyclone genesis, lysis, intensity and track density. Results show that, for enhanced positive sea-ice concentrations in the Sea of Okhotsk, there is a decrease in secondary cyclogenesis, a westward shift in cyclolysis and changes in the subtropical jet are seen in the North Pacific. In the Atlantic, a pattern resembling the negative phase of the NAO is observed. This pattern is confirmed by the AGCM ECHAM5 experiments driven with above normal sea-ice anomalies in the Sea of Okhotsk

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Changes to the Northern Hemisphere winter (December, January and February) extratropical storm tracks and cyclones in a warming climate are investigated. Two idealised climate change experiments with HiGEM1.1, a doubled CO2 and a quadrupled CO2 experiment, are compared against a present day control run. An objective feature tracking method is used and a focus given to regional changes. The climatology of extratropical storm tracks from the control run is shown to be in good agreement with ERA-40, while the frequency distribution of cyclone intensity also compares well. In both simulations the mean climate changes are generally consistent with the simulations of the IPCC AR4 models, with a strongly enhanced surface warming at the winter pole and the reduced lower tropospheric warming over the North Atlantic Ocean associated with the slowdown of the Meridional Overturning Circulation. The circulation changes in the North Atlantic are different between the two idealised simulations with different CO2 forcings. In the North Atlantic the storm tracks are influenced by the slowdown of the MOC, the enhanced surface polar warming, and the enhanced upper tropical troposphere warming, giving a north eastward shift of the storm tracks in the 2XCO2 experiment, but no shift in the 4XCO2 experiment. Over the Pacific, in the 2XCO2 experiment, changes in the mean climate are associated with local temperature changes, while in the 4XCO2 experiment the changes in the Pacific are impacted by the weakened tropical circulation. The storm track changes are consistent with the shifts in the zonal wind. Total cyclone numbers are found to decrease over the Northern Hemisphere with increasing CO2 forcing. Changes in cyclone intensity are found using 850hPa vorticity, mean sea level pressure, and 850hPa winds. The intensity of the Northern Hemisphere cyclones is found to decrease relative to the control.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Arctic has undergone substantial changes over the last few decades in various cryospheric and derivative systems and processes. Of these, the Arctic sea ice regime has seen some of the most rapid change and is one of the most visible markers of Arctic change outside the scientific community. This has drawn considerable attention not only from the natural sciences, but increasingly, from the political and commercial sectors as they begin to grapple with the problems and opportunities that are being presented. The possible impacts of past and projected changes in Arctic sea ice, especially as it relates to climatic response, are of particular interest and have been the subject of increasing research activity. A review of the current knowledge of the role of sea ice in the climate system is therefore timely. We present a review that examines both the current state of understanding, as regards the impacts of sea-ice loss observed to date, and climate model projections, to highlight hypothesised future changes and impacts on storm tracks and the North Atlantic Oscillation. Within the broad climate-system perspective, the topics of storminess and large-scale variability will be specifically considered. We then consider larger-scale impacts on the climatic system by reviewing studies that have focused on the interaction between sea-ice extent and the North Atlantic Oscillation. Finally, an overview of the representation of these topics in the literature in the context of IPCC climate projections is presented. While most agree on the direction of Arctic sea-ice change, the rates amongst the various projections vary greatly. Similarly, the response of storm tracks and climate variability are uncertain, exacerbated possibly by the influence of other factors. A variety of scientific papers on the relationship between sea-ice changes and atmospheric variability have brought to light important aspects of this complex topic. Examples are an overall reduction in the number of Arctic winter storms, a northward shift of mid-latitude winter storms in the Pacific and a delayed negative NAO-like response in autumn/winter to a reduced Arctic sea-ice cover (at least in some months). This review paper discusses this research and the disagreements, bringing about a fresh perspective on this issue.