992 resultados para V PROTEIN SECRETION


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glyphosate is an herbicide that inhibits the enzyme 5-enolpyruvyl-shikimate-3-phosphate synthase (EPSPs) (EC 2.5.1.19). EPSPs is the sixth enzyme of the shikimate pathway, by which plants synthesize the aromatic amino acids phenylalanine, tyrosine, and tryptophan and many compounds used in secondary metabolism pathways. About fifteen years ago it was hypothesized that it was unlikely weeds would evolve resistance to this herbicide because of the limited degree of glyphosate metabolism observed in plants, the low resistance level attained to EPSPs gene overexpression, and because of the lower fitness in plants with an altered EPSPs enzyme. However, today 20 weed species have been described with glyphosate resistant biotypes that are found in all five continents of the world and exploit several different resistant mechanisms. The survival and adaptation of these glyphosate resistant weeds are related toresistance mechanisms that occur in plants selected through the intense selection pressure from repeated and exclusive use of glyphosate as the only control measure. In this paper the physiological, biochemical, and genetic basis of glyphosate resistance mechanisms in weed species are reviewed and a novel and innovative theory that integrates all the mechanisms of non-target site glyphosate resistance in plants is presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cyanobacteria are a very important group in aquatic systems, particularly in eutrophic waters. Therefore studies about their success in the environment are essential. Many hypotheses have tried to explain the dominance of Cyanobacteria, and several emphasized the importance of various nitrogen sources for the success of the group. In this study, we measured the effect of ammonium and nitrate on the growth and protein concentration of Microcystis viridis (Cyanobacteria). This species is well-known because bloom formation in eutrophic waters. The study was carried out, in experimental batch cultures, using the WC medium with different nitrogen sources: ammonium, nitrate, ammonium + nitrate (50% ammonium + 50% nitrate) and ammonium at different concentrations (to test for possible NH4+ toxicity). Protein, ammonium and nitrate concentrations were measured at end of each experiment, whereas samples for cell counts were taken daily. Results showed that Microcystis viridis grew faster with ammonium (µ = 0.393 day-1) than with nitrate (µ = 0.263 day-1) and ammonium + nitrate (µ = 0.325 day-1). This pattern is explained by the metabolism of ammonium that presents higher uptake and assimilation rates than nitrate. Maximum cell concentration, however, was higher in the ammonium + nitrate treatment, followed by nitrate treatment. Higher protein concentration were observed in the treatment with nitrate. In the ammonium toxicity test, no difference between the control and NH4+ at 50% was found. Thus, the ammonium concentrations used in these experiments were not toxic. Our results suggest that Cyanobacteria is able to grow on both nitrogen sources even if ammonium may allow faster growth and bloom development.