995 resultados para Università di Cagliari. Biblioteca


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nel periodo storico compreso tra la seconda metà dell’Ottocento ed il primo ventennio del Novecento, un’ondata di innovazioni tecnologiche e scientifiche, unitamente all’espansione dell’industria siderurgica e la conseguente diffusione del ferro come materiale da costruzione, portarono alla realizzazione di strutture metalliche grandiose. Ciò fu reso possibile grazie ad una fervida attività di ricerca che permise la risoluzione di problematiche tecniche di assoluto rilievo, come la progettazione di grandi coperture o di ponti destinati al traffico ferroviario in grado di coprire luci sempre maggiori. In questo contesto si sviluppò il sistema della chiodatura come metodo di unione per il collegamento rigido e permanente dei vari elementi che compongono la struttura portante metallica. Ad oggi il sistema della chiodatura è stato quasi completamente sostituito dalla bullonatura di acciaio ad alta resistenza e dalla saldatura, che garantendo gli stessi standard di affidabilità e sicurezza, offrono vantaggi in termini economici e di rapidità esecutiva. Tuttavia lo studio delle unioni chiodate continua a rivestire notevole importanza in tutti quei casi in cui il progettista debba occuparsi di restauro, manutenzione o adeguamento di strutture esistenti che in molti casi continuano ad assolvere le funzioni per le quali erano state progettate. La valutazione delle strutture esistenti, in particolare i ponti, ha assunto un’importanza sempre crescente. L’incremento della mobilità e del traffico sulle infrastrutture di trasporto ha portato ad un incremento contemporaneo di carichi e velocità sui ponti. In particolare nelle ferrovie, i ponti rappresentano una parte strategica della rete ferroviaria e in molti casi, essi hanno già raggiunto i loro limiti di capacità di traffico, tanto è vero che l’età media del sessanta percento dei ponti metallici ferroviari è di un centinaio di anni. Pertanto i carichi di servizio, i cicli di sforzo accumulati a causa dei carichi da traffico e il conseguente invecchiamento delle strutture esistenti, inducono la necessità della valutazione della loro rimanente vita a fatica. In questo contesto, la valutazione delle condizioni del ponte e le conseguenti operazioni di manutenzione o sostituzione diventano indispensabili. Negli ultimi decenni sono state effettuate numerose iniziative di ricerca riguardo il comportamento a fatica dei ponti ferroviari chiodati, poiché le passate esperienze hanno mostrato che tali connessioni sono suscettibili di rotture per fatica. Da uno studio dell’ASCE Committee on Fatigue and Fracture Reliability è emerso che l’ottanta, novanta percento delle crisi nelle strutture metalliche è da relazionarsi ai fenomeni di fatica e frattura. Il danno per fatica riportato dai ponti chiodati è stato osservato principalmente sulle unioni tra elementi principali ed è causato dagli sforzi secondari, che si possono sviluppare in diverse parti delle connessioni. In realtà riguardo la valutazione della fatica sui ponti metallici chiodati, si è scoperto che giocano un ruolo importante molti fattori, anzitutto i ponti ferroviari sono soggetti a grandi variazioni delle tensioni indotte da carichi permanenti e accidentali, così come imperfezioni geometriche e inclinazioni o deviazioni di elementi strutturali comportano sforzi secondari che solitamente non vengono considerati nella valutazione del fenomeno della fatica. Vibrazioni, forze orizzontali trasversali, vincoli interni, difetti localizzati o diffusi come danni per la corrosione, rappresentano cause che concorrono al danneggiamento per fatica della struttura. Per questo motivo si studiano dei modelli agli elementi finiti (FE) che riguardino i particolari delle connessioni e che devono poi essere inseriti all’interno di un modello globale del ponte. L’identificazione degli elementi critici a fatica viene infatti solitamente svolta empiricamente, quindi è necessario che i modelli numerici di cui si dispone per analizzare la struttura nei particolari delle connessioni, così come nella sua totalità, siano il più corrispondenti possibile alla situazione reale. Ciò che ci si propone di sviluppare in questa tesi è un procedimento che consenta di affinare i modelli numerici in modo da ottenere un comportamento dinamico analogo a quello del sistema fisico reale. Si è presa in esame la seguente struttura, un ponte metallico ferroviario a binario unico sulla linea Bologna – Padova, che attraversa il fiume Po tra le località di Pontelagoscuro ed Occhiobello in provincia di Ferrara. Questo ponte fu realizzato intorno agli anni che vanno dal 1945 al 1949 e tra il 2002 e il 2006 ha subito interventi di innalzamento, ampliamento ed adeguamento nel contesto delle operazioni di potenziamento della linea ferroviaria, che hanno portato tra l’altro all’affiancamento di un nuovo ponte, anch’esso a singolo binario, per i convogli diretti nella direzione opposta. Le travate metalliche del ponte ferroviario sono costituite da travi principali a traliccio a gabbia chiusa, con uno schema statico di travi semplicemente appoggiate; tutte le aste delle travi reticolari sono formate da profilati metallici in composizione chiodata. In particolare si è rivolta l’attenzione verso una delle travate centrali, della quale si intende affrontare un’analisi numerica con caratterizzazione dinamica del modello agli Elementi Finiti (FEM), in modo da conoscerne lo specifico comportamento strutturale. Ad oggi infatti l’analisi strutturale si basa prevalentemente sulla previsione del comportamento delle strutture tramite modelli matematici basati su procedimenti risolutivi generali, primo fra tutti il Metodo agli Elementi Finiti. Tuttavia i risultati derivanti dal modello numerico possono discostarsi dal reale comportamento della struttura, proprio a causa delle ipotesi poste alla base della modellazione. Difficilmente infatti si ha la possibilità di riscontrare se le ipotesi assunte nel calcolo della struttura corrispondano effettivamente alla situazione reale, tanto più se come nella struttura in esame si tratta di una costruzione datata e della quale si hanno poche informazioni circa i dettagli relativi alla costruzione, considerando inoltre che, come già anticipato, sforzi secondari e altri fattori vengono trascurati nella valutazione del fenomeno della fatica. Nel seguito si prenderanno in esame le ipotesi su masse strutturali, rigidezze dei vincoli e momento d’inerzia delle aste di parete, grandezze che caratterizzano in particolare il comportamento dinamico della struttura; per questo sarebbe ancora più difficilmente verificabile se tali ipotesi corrispondano effettivamente alla costruzione reale. Da queste problematiche nasce l’esigenza di affinare il modello numerico agli Elementi Finiti, identificando a posteriori quei parametri meccanici ritenuti significativi per il comportamento dinamico della struttura in esame. In specifico si andrà a porre il problema di identificazione come un problema di ottimizzazione, dove i valori dei parametri meccanici vengono valutati in modo che le caratteristiche dinamiche del modello, siano il più simili possibile ai risultati ottenuti da elaborazioni sperimentali sulla struttura reale. La funzione costo è definita come la distanza tra frequenze proprie e deformate modali ottenute dalla struttura reale e dal modello matematico; questa funzione può presentare più minimi locali, ma la soluzione esatta del problema è rappresentata solo dal minimo globale. Quindi il successo del processo di ottimizzazione dipende proprio dalla definizione della funzione costo e dalla capacità dell’algoritmo di trovare il minimo globale. Per questo motivo è stato preso in considerazione per la risoluzione del problema, l’algoritmo di tipo evolutivo DE (Differential Evolution Algorithm), perché gli algoritmi genetici ed evolutivi vengono segnalati per robustezza ed efficienza, tra i metodi di ricerca globale caratterizzati dall’obiettivo di evitare la convergenza in minimi locali della funzione costo. Obiettivo della tesi infatti è l’utilizzo dell’algoritmo DE modificato con approssimazione quadratica (DE-Q), per affinare il modello numerico e quindi ottenere l’identificazione dei parametri meccanici che influenzano il comportamento dinamico di una struttura reale, il ponte ferroviario metallico a Pontelagoscuro.