994 resultados para United States. Soil Conservation Service.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cobia (Rachycentron canadum) is a pelagic, migratory species with a transoceanic distribution in tropical and subtropical waters. Recreational fishing pressure on Cobia in the United States has increased substantially during the last decade, especially in areas of its annual inshore aggregations, making this species potentially susceptible to overfishing. Although Cobia along the Atlantic and Gulf coasts of the southeastern United States are currently managed as a single fishery, the genetic composition of Cobias in these areas is unclear. On the basis of a robust microsatellite data set from collections along the U.S. Atlantic coast (2008–09), offshore groups were genetically homogenous. However, the 2 sampled inshore aggregations (South Carolina and Virginia) were genetically distinct from each other, as well as from the offshore group. The recapture of stocked fish within their release estuary 2 years after release indicates that some degree of estuarine fidelity occurs within these inshore aggregations and supports the detection of their unique genetic structure at the population level. These results complement the observed high site fidelity of Cobias in South Carolina and support a recent study that confirms that Cobia spawn in the inshore aggregations. Our increased understanding of Cobia life history will be beneficial for determining the appropriate scale of fishery management for Cobia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe the climatology of the western United States as seen from two 1-month perspectives, January and July 1988, of the National Meteorological Center large-scale global analysis, the Colorado State University Regional Atmospheric Modeling System (RAMS), and various station observation sets. An advantage of the NMC analysis and the RAMS is that they provide a continuous field interpolation of the meteorological variables. It is more difficult to describe spatial meteorological fields from the available sparse station networks. We assess accuracy of the NMC analysis and RAMS by finding differences between the analysis, the model, and station values at the stations. From these comparisons, we find that RAMS has much more well-developed mesoscale circulation, especially in the surface wind field. However, RAMS climatological and transient fields do not appear to be substantially closer than the larger-scale analysis to the station observations. The RAMS model does provide other meteorological variables, such as precipitation, which are not readily available from the archives of the global analysis. Thus, RAMS could, at the least, be a tool to augment the NMC large-scale analyses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extensive losses of coastal wetlands in the United States caused by sea-level rise, land subsidence, erosion, and coastal development have increased hterest in the creation of salt marshes within estuaries. Smooth cordgrass Spartina altemiflora is the species utilized most for salt marsh creation and restoration throughout the Atlantic and Gulf coasts of the U.S., while S. foliosa and Salicomia virginica are often used in California. Salt marshes have many valuable functions such as protecting shorelines from erosion, stabilizing deposits of dredged material, dampening flood effects, trapping water-born sediments, serving as nutrient reservoirs, acting as tertiary water treatment systems to rid coastal waters of contaminants, serving as nurseries for many juvenile fish and shellfish species, and serving as habitat for various wildlife species (Kusler and Kentula 1989). The establishment of vegetation in itself is generally sufficient to provide the functions of erosion control, substrate stabilization, and sediment trapping. The development of other salt marsh functions, however, is more difficult to assess. For example, natural estuarine salt marshes support a wide variety of fish and shellfish, and the abundance of coastal marshes has been correlated with fisheries landings (Turner 1977, Boesch and Turner 1984). Marshes function for aquatic species by providing breeding areas, refuges from predation, and rich feeding grounds (Zimmerman and Minello 1984, Boesch and Turner 1984, Kneib 1984, 1987, Minello and Zimmerman 1991). However, the relative value of created marshes versus that of natural marshes for estuarine animals has been questioned (Carnmen 1976, Race and Christie 1982, Broome 1989, Pacific Estuarine Research Laboratory 1990, LaSalle et al. 1991, Minello and Zimmerman 1992, Zedler 1993). Restoration of all salt marsh functions is necessary to prevent habitat creation and restoration activities from having a negative impact on coastal ecosystems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Serial, cyclonic, mesoscale eddies arise just north of the Charleston Bump, a topographical rise on the continental slope and Blake Plateau, and characterize the U.S. outer shelf and upper slope in the region of the Charleston Gyre. This region was transected during the winters of 2000, 2001, and 2002, and hydrographic data and larval fishes were collected. The hydrodynamics of the cyclonic eddies of the Charleston Gyre shape the distribution of larval fishes by mixing larvae from the outer continental shelf and the Gulf Stream and entraining them into the eddy circulation at the peripheral margins, the wrap-around filaments. Over all years and transects (those that intercepted eddies and those that did not), chlorophyll a concentrations, zooplankton displacement volumes, and larval fish concentrations were positively correlated. Chlorophyll a concentrations were highest in filaments that wrapped around eddies, and zooplankton displacement volumes were highest in the continental shelf–Gulf Stream–frontal mix. Overall, the concentration of all larval fishes declined from inshore to offshore with highest concentrations occurring over the outer shelf. Collections produced larvae from 91 fish families representing continental shelf and oceanic species. The larvae of shelf-spawned fishes—Atlantic Menhaden Brevoortia tyrannus, Round Herring Etrumeus teres, Spot Leiostomus xanthurus, and Atlantic Croaker Micropogonias undulatus—were most concentrated over the outer shelf and in the continental shelf–Gulf Stream–frontal mix. The larvae of ocean-spawned fishes—lanternfishes, bristlemouths, and lightfishes—were more evenly dispersed in low concentrations across the outer shelf and upper slope, the highest typically in the Gulf Stream and Sargasso Sea, except for lightfishes that were highest in the continental shelf–Gulf Stream–frontal mix. Detrended correspondence analysis rendered groups of larval fishes that corresponded with a gradient between the continental shelf and Gulf Stream and Sargasso Sea. Eddies propagate northeastward with a residence time on the outer shelf and upper slope of ∼1 month, the same duration as the larval period of most fishes. The pelagic habitat afforded by eddies and fronts of the Charleston Gyre region can be exploited as nursery areas for feeding and growth of larval fishes within the southeastern Atlantic continental shelf ecosystem of the U.S. Eddies, and the nursery habitat they provide, translocate larvae northeastward.