993 resultados para Ultimate shear strength


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The ultimate flexural strength behavior of isolated square tapered and beam-slab reinforced footings are presented. Yield line solutions are developed for generalized contact pressure distributions and the influence of taper, beam size, fillet size, negative moment capacity, and contact pressure distribution on the collapse load is brought out. In beam-slab footings the optimum relative beam capacity required to make the beam rigid is indicated. Results of experimental investigations on footings resting on sand reveal that tapered (with isotropic as well as with alternative reinforcement patterns) and beam-slab footings exhibit superior structural behavior in terms of normalized first crack load, collapse load, relative rigidity, relative efficiency, and failure mechanism.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The rivet-fastened rectangular hollow flange channel beam (RHFCB) is a new cold-formed hollow section proposed as an alternative to welded hollow flange steel beams. No research has been undertaken on the shear behaviour and strength of rivet fastened RHFCBs with web openings. Hence a detailed experimental study involving 30 shear tests was undertaken to investigate the shear behaviour and strength of rivet fastened RHFCBs with web openings. Experimental results showed that the current design rules are inadequate for the shear design of Rivet fastened RHFCBs with web openings. Improved design equations have been proposed for the shear strength of rivet fastened RHFCBs with web openings.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Seawater aging response was investigated in marine-grade glass/epoxy, glass/vinyl ester, carbon/epoxy and carbon/vinyl ester composites with respect to water uptake, interlaminar shear strength, flexural strength, tensile strength, and tensile fracture surface observations. The reduction of mechanical properties was found to be higher in them initial stages which showed saturation in the longer durations of seawater immersion. The flexural strength and ultimate tensile strength (UTS) dropped by about 35% and 27% for glass/epoxy, 22% and 15% for glass/vinyl ester, 48% and 34% for carbon/epoxy 28%, and 21% carbon/vinyl ester composites respectively. The water uptake behavior of epoxy-based composites was inferior to that of the vinyl system.