999 resultados para U–Pb SHRIMP zircon dating


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Detrital zircon and metamorphic monazite ages from the Picuris Mountains, north central New Mexico, were used to confirm the depositional age of the Marquenas Formation, to document the depositional age of the Vadito Group, and to constrain the timing of metamorphism and deformation in the region. Detrital zircon 207Pb/206Pb ages were obtained with the LA-MC-ICPMS from quartzites collected from the type locality of the Marquenas Formation exposed at Cerro de las Marquenas, and from the lower Vadito Group in the southern and eastern Picuris Mountains. The Marquenas Formation sample yields 113 concordant ages including a Mesoproterozoic age population with four grains ca. 1470 Ga, a broad Paleoproterozoic age peak at 1695 Ma, and minor Archean age populations. Data confirm recent findings of Mesoproterozoic detrital zircons reported by Jones et al. (2011), and show that the Marquenas Formation is the youngest lithostratigraphic unit in the Picuris Mountains. Paleoproterozoic and Archean detrital grains in the Marquenas Formation are likely derived from local recycled Vadito Group rocks and ca. 1.75 Ga plutonic complexes, and ca. 1.46 detrital zircons were most likely derived from exposed Mesoproterozoic plutons south of the Picuris. Ninety-five concordant grains from each of two Vadito Group quartzites yield relatively identical unimodal Paleoproterozoic age distributions, with peaks at 1713-1707 Ma. Eastern exposures of quartzite mapped as Marquenas Formation yield detrital zircon age patterns and metamorphic mineral assemblages that are nearly identical to the Vadito Group. On this basis, I tentatively assigned the easternmost quartzite to the Vadito Group. Zircon grains in all samples show low U/Th ratios, welldeveloped concentric zoning, and no evidence of metamorphic overgrowth events, consistent with an igneous origin. North-directed paleocurrent indicators, such as tangential crossbeds (Soegaard & Eriksson, 1986) and other primary sedimentary structures, are preserved in the Marquenas Formation quartzite. Together with pebble-toboulder metaconglomerates in the Marquenas, these observations suggest that this formation was deposited in a braided alluvial plain environment in response to syntectonic uplift to the south of the Picuris Mountains. Metamorphic monazite from two Vadito Group quartzite samples were analyzed with an electron microprobe (EMP). Elemental compositional variation with respect to Th and Y define core and rim domains in monazite grains, and show lower concentrations of Th (1.46-1.52 wt%) and Y (0.67 wt%) in the cores, and higher concentrations of Th (1.98 wt%) and Y (1.06 wt%) in the rims. Results show that Mesoproterozoic core and rim ages from five grains overlap within uncertainty, ranging from 1395-1469 Ma with an average age of 1444 Ma. This 1.44 Ga average age is the dominant timing of metamorphic monazite growth in the region, and represents the timing of metamorphism experienced by the region. An older 1630 Ma core observed in sample CD10-12 may be interpreted as a result of low temperature metamorphism in lower Vadito Group rocks due to heat from ca. 1.65 Ga granitic intrusions. Core ages ca. 1.5 Ga are likely due to a mixing age of two different age domains during analyses. Confirmed sedimentation at 1.48-1.45 Ga and documented mid-crustal regional metamorphism in northern New Mexico ca. 1.44-1.40 are likely associated with a Mesoproterozoic orogenic event.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Preliminary detrital zircon age distributions from Mazatzal crustal province quartzite and schist exposed in the Manzano Mountains and Pedernal Hills of central New Mexico are consistent with a mixture of detritus from Mazatzal age (ca. 1650 Ma), Yavapai age (ca. 1720 Ma.), and older sources. A quartzite sample from the Blue Springs Formation in the Manzano Mountains yielding 67 concordant grain analyses shows two dominant age peaks of 1737 Ma and 1791 Ma with a minimum peak age of 1652 Ma. Quartzite and micaceous quartzite samples from near Pedernal Peak give unimodal peak ages of ca. 1695 Ma and 1738 Ma with minimum detrital zircon ages of ca. 1625 Ma and 1680 Ma, respectively. A schist sample from the southern exposures of the Pedernal Hills area gives a unimodal peak age of 1680 Ma with a minimum age of ca. 1635 Ma. Minor amounts of older detritus (>1800 Ma) possibly reflect Trans-Hudson, Wyoming, Mojave Province, and older Archean sources and aid in locating potential source terrains for these detrital zircon. The Blue Springs Formation metarhyolite from near the top of the Proterozoic section in the Manzano Mountains yields 71 concordant grains that show a preliminary U-Pb zircon crystallization age of 1621 ¿ 5 Ma, which provides a minimum age constraint for deposition in the Manzano Mountains. Normalized probability plots from this study are similar to previously reported age distributions in the Burro and San Andres Mountains in southern New Mexico and suggest that Yavapai Province age detritus was deposited and intermingled with Mazatzal Province age detritus across much of the Mazatzal crustal province in New Mexico. This data shows that the tectonic evolution of southwestern Laurentia is associated with multiple orogenic events. Regional metamorphism and deformation in the area must postdate the Mazatzal Orogeny and ca. 1610 Ma ¿ 1620 Ma rhyolite crystallization and is attributed to the Mesoproterozoic ca. 1400 ¿ 1480 Ma Picuris Orogeny.