992 resultados para Trajectory Modelling


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to evaluate the future potential benefits of emission regulation on regional air quality, while taking into account the effects of climate change, off-line air quality projection simulations are driven using weather forcing taken from regional climate models. These regional models are themselves driven by simulations carried out using global climate models (GCM) and economical scenarios. Uncertainties and biases in climate models introduce an additional “climate modeling” source of uncertainty that is to be added to all other types of uncertainties in air quality modeling for policy evaluation. In this article we evaluate the changes in air quality-related weather variables induced by replacing reanalyses-forced by GCM-forced regional climate simulations. As an example we use GCM simulations carried out in the framework of the ERA-interim programme and of the CMIP5 project using the Institut Pierre-Simon Laplace climate model (IPSLcm), driving regional simulations performed in the framework of the EURO-CORDEX programme. In summer, we found compensating deficiencies acting on photochemistry: an overestimation by GCM-driven weather due to a positive bias in short-wave radiation, a negative bias in wind speed, too many stagnant episodes, and a negative temperature bias. In winter, air quality is mostly driven by dispersion, and we could not identify significant differences in either wind or planetary boundary layer height statistics between GCM-driven and reanalyses-driven regional simulations. However, precipitation appears largely overestimated in GCM-driven simulations, which could significantly affect the simulation of aerosol concentrations. The identification of these biases will help interpreting results of future air quality simulations using these data. Despite these, we conclude that the identified differences should not lead to major difficulties in using GCM-driven regional climate simulations for air quality projections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Relating the measurable, large scale, effects of anaesthetic agents to their molecular and cellular targets of action is necessary to better understand the principles by which they affect behavior, as well as enabling the design and evaluation of more effective agents and the better clinical monitoring of existing and future drugs. Volatile and intravenous general anaesthetic agents (GAs) are now known to exert their effects on a variety of protein targets, the most important of which seem to be the neuronal ion channels. It is hence unlikely that anaesthetic effect is the result of a unitary mechanism at the single cell level. However, by altering the behavior of ion channels GAs are believed to change the overall dynamics of distributed networks of neurons. This disruption of regular network activity can be hypothesized to cause the hypnotic and analgesic effects of GAs and may well present more stereotypical characteristics than its underlying microscopic causes. Nevertheless, there have been surprisingly few theories that have attempted to integrate, in a quantitative manner, the empirically well documented alterations in neuronal ion channel behavior with the corresponding macroscopic effects. Here we outline one such approach, and show that a range of well documented effects of anaesthetics on the electroencephalogram (EEG) may be putatively accounted for. In particular we parameterize, on the basis of detailed empirical data, the effects of halogenated volatile ethers (a clinically widely used class of general anaesthetic agent). The resulting model is able to provisionally account for a range of anaesthetically induced EEG phenomena that include EEG slowing, biphasic changes in EEG power, and the dose dependent appearance of anomalous ictal activity, as well as providing a basis for novel approaches to monitoring brain function in both health and disease.