996 resultados para Tooth preparation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A convenient microwave method in preparation of zinc oxide nanoparticles (ZnONPs) using an ionic liquid, trihexyltetradecylphosphonium bis{(trifluoromethyl)sulfonyl}-imide, [P-66614][NTf2], as a green solvent is described in this paper. To the best of our knowledge, there is no report for synthesizing any nanoparticle using this ionic liquid. Trihexyltetradecylphosphonium bis{(trifluoromethyl)sulfonyl}-imide has low interface tension and thus it can enhance the nucleation rate, which is favorable to the formation of smaller ZnONPs. The fabricated ZnONPs were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and UV-vis spectroscopy. The XRD pattern reveals that the ZnONPs have hexagonal wurtzite structure. The strong intensity and narrow width of ZnO diffraction peaks indicate that the resulting nanoparticles are of high crystallinity. The synthesized ZnONPs show direct band gap of 3.43 eV. The UV-vis absorption spectrum of ZnONPs dispersed in ethylene glycol at room temperature revealed a blue-shifted onset of absorption. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Porous carbon aerogels are prepared by polycondensation of resorcinol and formaldehyde catalyzed by sodium carbonate followed by carbonization of the resultant aerogels in an inert atmosphere. Pore structure of carbon aerogels is adjusted by changing the molar ratio of resorcinol to catalyst during gel preparation and also pyrolysis under Ar and activation under CO2 atmosphere at different temperatures. The prepared carbons are used as active materials in fabrication of composite carbon electrodes. The electrochemical performance of the electrodes has been tested in a Li/O2 cell. Through the galvanostatic charge/discharge measurements, it is found that the cell performance (i.e. discharge capacity and discharge voltage) depends on the morphology of carbon and a combined effect of pore volume, pore size and surface area of carbon affects the storage capacity. A Li/O2 cell using the carbon with the largest pore volume (2.195cm3/g) and a wide pore size (14.23 nm) showed a specific capacity of 1290mAh g-1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method for the hydrothermal synthesis of a single layer of zeolite Beta crystals on a molybdenum substrate for microreactor applications has been developed. Before the hydrothermal synthesis, the surface of the substrate was modified by an etching procedure that increases the roughness at the nanoscale level without completely eliminating the surface lay structure. Then, thin films of Al2O3 (170 nm) and TiO2 (50 nm) were successively deposited by atomic layer deposition (ALD) on the substrate. The internal Al2O3 film protects the Mo substrate from oxidation up to 550 degrees C in an oxidative environment. The high wettability of the external TiO2 film after UV irradiation increases zeolite nucleation on its surface. The role of the metal precursor (TiCl4 vs TiI4), deposition temperature (300 vs 500 degrees C), and film thickness (50 vs 100 nm) was investigated to obtain titania films with the slowest decay in the superhydrophilic behavior after UV irradiation. Zeolite Beta coatings with a Si/Al ratio of 23 were grown at 140 degrees C for 48 It. After ion exchange with a 10(-4) M cobalt acetate solution, the activity of the coatings was determined in the ammoxidation of ethylene to acetonitrile in a microstructured reactor. A maximum reaction rate of 220 mu mol C2H3N g(-1) s(-1) was obtained at 500 degrees C, with 42% carbon selectivity to acetonitrile. (C) 2007 Elsevier Inc. All rights reserved.