999 resultados para Stream measurements.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Length frequency distributions of the sea bream collected during the period 1953 to 1958 have been analysed. The increase in average sizes of the sea bream with depth suggests a movement to deeper waters with increase in size. By numbers, the sea bream is more abundant between 21 and 30 fathoms than in deeper areas. The recruitment was continuous and regular. There is no sign of entry or progression of a dominant brood throughout the period under study. Length frequency distribution shows three distinct modes. The first mode occurs regularly but does not progress beyond 40cm, recruitment being balanced by natural and fishing mortality. The other two which are not regular are probably the result of fishing outside regular areas. Short sections of “growth” lines which fit into one another when extrapolated, are evident. The larger lines obtained by extrapolation are parallel to one another. These tentative "growth lines" indicate that this species which enters the fishing grounds, when 15 cm or larger in length are exploited by the trawl fishery for a period of three to four years. This species appears to be six months old when it enters the fishing grounds and increases in length by about 37.5 cm in the next 30 months. Later growth slows down. The average size of the specimens sampled continued to get smaller from 1953 till 1957. It is shown that this reduction in size is due to increased fishing effort.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transient test facilities offer the potential for the simultaneous study of turbine aerodynamic performance, unsteady flow phenomena and the heat transfer characteristics of a turbine stage. This paper describes the development of aerodynamic performance measurement techniques in the Oxford Rotor Facility (ORF). The solutions to the technological issues involved with transient testing presented in this paper are expected to achieve levels of precision uncertainty comparable with traditional steady flow test rigs. The theoretical background to the measurement of aerodynamic performance is presented together with a comprehensive pre-test uncertainty analysis. The instrumentation scheme for the measurement of stage mass flow rate is discussed in detail, the measurements of shaft power, total inlet enthalpy, and stage pressure ratio are also outlined. The current working section features a 62% scale, 1-1/2 stage, high-pressure shroudless transonic turbine. The required inlet flow conditions are provided by an Isentropic Light Piston Tunnel (ILPT) with a quasi-steady state run time of approximately 70ms. The testing is conducted at engine representative specific speed, pressure ratio, gas-to-wall temperature ratio, Mach number and Reynolds number.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bone is an anisotropic material, and its mechanical properties are determined by its microstructure as well as its composition. Mechanical properties of bone are a consequence of the proportions of, and the interactions between, mineral, collagen and water. Water plays an important role in maintaining the mechanical integrity of the composite, but the manner in which water interacts within the ultrastructure is unclear. Dentine being an isotropic two-dimensional structure presents a homogenous composite to examine the dehydration effects. Nanoindentation methods for determining the viscoelastic properties have recently been developed and are a subject of great interest. Here, one method based on elastic-viscoelastic correspondence for 'ramp and hold' creep testing (Oyen, J. Mater. Res., 2005) has been used to analyze viscoelastic behavior of polymeric and biological materials. The method of 'ramp and hold' allows the shear modulus at time zero to be determined from fitting of the displacement during the maximum load hold. Changes in the viscoelastic properties of bone and dentine were examined as the material was systematically dehydrated in a series of water:solvent mixes. Samples of equine dentine were sectioned and cryo-polished. Shear modulus was obtained by nanoindentation using spherical indenters with a maximum load hold of 120s. Samples were tested in different solvent concentrations sequentially, 70% ethanol to 50% ethanol, 70 % ethanol to 100% ethanol, 70% ethanol to 70% methanol to 100% methanol, and 70% ethanol to 100% acetone, after storage in each condition for 24h. By selectively removing and then replacing water from the composite, insights in to the ultrastructure of the tissue can be gained from the corresponding changes in the experimentally determined moduli, as well as an understanding of the complete reversibility of the dehydration process. © 2006 Materials Research Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Salinity, temperature and pressure are parameters which govern the oceanographic state of a marine water body and together they make up density of seawater. In this contribution we will focus our interest on one of these parameters, the salinity: accuracy in relation to different purposes as well as observation technique and instrumentation. We will also discuss the definition of salinity. For example most of the Indian Ocean waters are within the salinity range from 34.60-34.80, which emphasize the importance of careful observations and clear definitions of salinity, in such a way that it is possible to define water masses and predict their movements. In coastal waters the salinity usually features much larger variation in time and space and thus less accuracy is sometimes needed. Salinity has been measured and defined in several ways over the past century. While early measurements were based on the amount of salt in a sea water sample, today the salinity of seawater is most often determined from its conductivity. As conductivity is a function of salinity and temperature, determination involves also measurement of the density of seawater is now more precisely estimated and thus the temperature. As a result of this method the Practical Salinity Scale (PSS) was developed. The best determination of salinity from conductivity and the temperature measurements gives salinity with resolution of 0.001 psu, while the accuracy of titration method was about ± 0.02‰. Because of that, even calculation of movements in the ocean is also improved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper describes the use of optical fiber Brillouin Optical Time Domain Reflectometry (BOTDR) to monitor the strain distribution in an existing tunnel while a twin tunnel was bored at close-proximity. The twin circular bored tunnels between Serangoon and Bartley stations on the new Circle Line Stage 3 subway in Singapore were constructed at close-proximity to avoid underpinning the foundations of adjacent buildings. The minimum clear separation of the two tunnels is 2.3m (0.4 times the tunnel diameter). The Outer Tunnel was constructed first, followed by the Inner Tunnel, with the earth-pressure balance tunnel boring machines maintained at a minimum of 100m apart. In this trial application of BOTDR, the strain distribution along the Outer Tunnel was measured, in order to monitor its deformation due to the boring of the Inner Tunnel at close-proximity. The aim of the trial application was to determine the practicality of this monitoring method for future use in 'live' tunnels. This paper compares the measurements obtained from optical fiber BOTDR with conventional methods of tunnel monitoring and describes preliminary installation and workmanship guidelines derived from lessons learnt during this trial. © 2007 ASCE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stability of the underground structure is very important not only from the point of view of the structure itself, but also from the point of view of other structures. Therefore, the evaluation of the process of deterioration can help us very much. In the first part of the paper the ageing of the structures in the scope of their life cycle will be described. The whole process of deterioration is important but limited to certain time intervals and is able to give signals about changes in macro-scale. The second part of the paper is focused on the adaptation of new methods: micro technology of monitoring - such as MEMS (Micro Electrical Mechanical Systems) and wireless technologies for data transfer. It is obvious that such new technologies have to be assessed for the ability to deliver data continuously and for their safety and solidity. At the end of the paper the application of the measurements on the Prague metro's lining is mentioned. © 2007 Taylor & Francis Group.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The successful utilization of an array of silicon on insulator complementary metal oxide semiconductor (SOICMOS) micro thermal shear stress sensors for flow measurements at macro-scale is demonstrated. The sensors use CMOS aluminum metallization as the sensing material and are embedded in low thermal conductivity silicon oxide membranes. They have been fabricated using a commercial 1 μm SOI-CMOS process and a post-CMOS DRIE back etch. The sensors with two different sizes were evaluated. The small sensors (18.5 ×18.5 μm2 sensing area on 266 × 266 μm2 oxide membrane) have an ultra low power (100 °C temperature rise at 6mW) and a small time constant of only 5.46 μs which corresponds to a cut-off frequency of 122 kHz. The large sensors (130 × 130 μm2 sensing area on 500 × 500 μm2 membrane) have a time constant of 9.82 μs (cut-off frequency of 67.9 kHz). The sensors' performance has proven to be robust under transonic and supersonic flow conditions. Also, they have successfully identified laminar, separated, transitional and turbulent boundary layers in a low speed flow. © 2008 IEEE.