999 resultados para Split-Brain


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: For the past decade (18)F-fluoro-ethyl-l-tyrosine (FET) and (18)F-fluoro-deoxy-glucose (FDG) positron emission tomography (PET) have been used for the assessment of patients with brain tumor. However, direct comparison studies reported only limited numbers of patients. Our purpose was to compare the diagnostic performance of FET and FDG-PET. METHODS: We examined studies published between January 1995 and January 2015 in the PubMed database. To be included the study should: (i) use FET and FDG-PET for the assessment of patients with isolated brain lesion and (ii) use histology as the gold standard. Analysis was performed on a per patient basis. Study quality was assessed with STARD and QUADAS criteria. RESULTS: Five studies (119 patients) were included. For the diagnosis of brain tumor, FET-PET demonstrated a pooled sensitivity of 0.94 (95% CI: 0.79-0.98) and pooled specificity of 0.88 (95% CI: 0.37-0.99), with an area under the curve of 0.96 (95% CI: 0.94-0.97), a positive likelihood ratio (LR+) of 8.1 (95% CI: 0.8-80.6), and a negative likelihood ratio (LR-) of 0.07 (95% CI: 0.02-0.30), while FDG-PET demonstrated a sensitivity of 0.38 (95% CI: 0.27-0.50) and specificity of 0.86 (95% CI: 0.31-0.99), with an area under the curve of 0.40 (95% CI: 0.36-0.44), an LR+ of 2.7 (95% CI: 0.3-27.8), and an LR- of 0.72 (95% CI: 0.47-1.11). Target-to-background ratios of either FDG or FET, however, allow distinction between low- and high-grade gliomas (P > .11). CONCLUSIONS: For brain tumor diagnosis, FET-PET performed much better than FDG and should be preferred when assessing a new isolated brain tumor. For glioma grading, however, both tracers showed similar performances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Perinatal asphyxia induces neuronal cell death and brain injury, and is often associated with irreversible neurological deficits in children. There is an urgent need to elucidate the neuronal death mechanisms occurring after neonatal hypoxia-ischemia (HI). We here investigated the selective neuronal deletion of the Atg7 (autophagy related 7) gene on neuronal cell death and brain injury in a mouse model of severe neonatal hypoxia-ischemia. Neuronal deletion of Atg7 prevented HI-induced autophagy, resulted in 42% decrease of tissue loss compared to wild-type mice after the insult, and reduced cell death in multiple brain regions, including apoptosis, as shown by decreased caspase-dependent and -independent cell death. Moreover, we investigated the lentiform nucleus of human newborns who died after severe perinatal asphyxia and found increased neuronal autophagy after severe hypoxic-ischemic encephalopathy compared to control uninjured brains, as indicated by the numbers of MAP1LC3B/LC3B (microtubule-associated protein 1 light chain 3)-, LAMP1 (lysosomal-associated membrane protein 1)-, and CTSD (cathepsin D)-positive cells. These findings reveal that selective neuronal deletion of Atg7 is strongly protective against neuronal death and overall brain injury occurring after HI and suggest that inhibition of HI-enhanced autophagy should be considered as a potential therapeutic target for the treatment of human newborns developing severe hypoxic-ischemic encephalopathy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present a multi-stage classifier for magnetic resonance spectra of human brain tumours which is being developed as part of a decision support system for radiologists. The basic idea is to decompose a complex classification scheme into a sequence of classifiers, each specialising in different classes of tumours and trying to reproducepart of the WHO classification hierarchy. Each stage uses a particular set of classification features, which are selected using a combination of classical statistical analysis, splitting performance and previous knowledge.Classifiers with different behaviour are combined using a simple voting scheme in order to extract different error patterns: LDA, decision trees and the k-NN classifier. A special label named "unknown¿ is used when the outcomes of the different classifiers disagree. Cascading is alsoused to incorporate class distances computed using LDA into decision trees. Both cascading and voting are effective tools to improve classification accuracy. Experiments also show that it is possible to extract useful information from the classification process itself in order to helpusers (clinicians and radiologists) to make more accurate predictions and reduce the number of possible classification mistakes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Circulating progenitor cells (CPC) treatments may have great potential for the recovery of neurons and brain function. OBJECTIVE: To increase and maintain CPC with a program of exercise, muscle electro-stimulation (ME) and/or intermittent-hypobaric-hypoxia (IHH), and also to study the possible improvement in physical or psychological functioning of participants with Traumatic Brain Injury (TBI). METHODS: Twenty-one participants. Four groups: exercise and ME group (EEG), cycling group (CyG), IHH and ME group (HEG) and control group (CG). Psychological and physical stress tests were carried out. CPC were measured in blood several times during the protocol. RESULTS: Psychological tests did not change. In the physical stress tests the VO2 uptake increased in the EEG and the CyG, and the maximal tolerated workload increased in the HEG. CPC levels increased in the last three weeks in EEG, but not in CyG, CG and HEG. CONCLUSIONS: CPC levels increased in the last three weeks of the EEG program, but not in the other groups and we did not detect performed psychological test changes in any group. The detected aerobic capacity or workload improvement must be beneficial for the patients who have suffered TBI, but exercise type and the mechanisms involved are not clear.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Somatization was described 4000 years ago but the pathophysiology of the, phenomenon is unknown. The aim of this investigation was to explore whether central nervous system (CNS) pathology is associated with severe somatization which was operationalized as somatization disorder (SD) and undifferentiated somatoform disorder. The study sample consisted of severely somatizing people who were included into the study after a multi-phase screening procedure in order to exclude psychiatric comorbidities and physical illnesses. Diagnosis of somatization disorder or undifferentiated sofatoform disorder were set according to Diagnostic and Statistical Manual of Mental Disorders 4th ed. (DSM-IV). The first study explored the regional cerebral metabolic rate of glucose (rCMRGlc) in severely somatizing females and found it to be reduced in several regions of the brain compared to healthy controls. The second study observed brain morphology with magnetic resonance imaging (MRI) based on the findings from the first study and showed enlarged caudate nuclei in somatizing women compared to healthy volunteers. The third study investigated temperament factors and brain metabolism, and their association with severe somatization. Low caudate and putamen metabolism, low novelty seeking as well as high harm avoidance were found to be associated with severe somatization in women, reduced caudate metabolism having the strongest association. The last study is a report of man with left-side gradient of multiple symptoms of unknown origin in the body. The examination revealed a hypermetabolic nucleus putamen on the contralateral side. All the main results reported in these four articles are original findings. The results suggest that CNS pathology is involved in the pathophysiology of severe somatization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many aspects of human behavior are driven by rewards, yet different people are differentially sensitive to rewards and punishment. In this study, we showthat white matter microstructure inthe uncinate/inferiorfronto-occipitalfasciculus, defined byfractional anisotropy values derived from diffusion tensor magnetic resonance images, correlates with both short-term (indexed by the fMRI blood oxygenation level-dependent response to reward in the nucleus accumbens) and long-term (indexed by the trait measure sensitivity to punishment) reactivityto rewards.Moreover,traitmeasures of reward processingwere also correlatedwith reward-relatedfunctional activation in the nucleus accumbens. The white matter tract revealed by the correlational analysis connects the anterior temporal lobe with the medial and lateral orbitofrontal cortex and also supplies the ventral striatum. The pattern of strong correlations suggests an intimate relationship betweenwhitematter structure and reward-related behaviorthatmay also play a rolein a number of pathological conditions, such as addiction and pathological gambling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We sometimes vividly remember things that did not happen, a phenomenon with general relevance, not only in the courtroom. It is unclear to what extent individual differences in false memories are driven by anatomical differences in memory-relevant brain regions. Here we show in humans that microstructural properties of different white matter tracts as quantified using diffusion tensor imaging are strongly correlated with true and false memory retrieval. To investigate these hypotheses, we tested a large group of participants in a version of the Deese-Roediger-McDermott paradigm (recall and recognition) and subsequently obtained diffusion tensor images. A voxel-based whole-brain level linear regression analysis was performedto relatefractional anisotropyto indices oftrue andfalse memory recall and recognition. True memory was correlated to diffusion anisotropy in the inferior longitudinal fascicle, the major connective pathway of the medial temporal lobe, whereas a greater proneness to retrieve false items was related to the superior longitudinal fascicle connecting frontoparietal structures. Our results show that individual differences in white matter microstructure underlie true and false memory performance.