992 resultados para Spectral Theory
Resumo:
This paper discusses an approach for river mapping and flood evaluation based on multi-temporal time-series analysis of satellite images utilizing pixel spectral information for image clustering and region based segmentation for extracting water covered regions. MODIS satellite images are analyzed at two stages: before flood and during flood. Multi-temporal MODIS images are processed in two steps. In the first step, clustering algorithms such as Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) are used to distinguish the water regions from the non-water based on spectral information. These algorithms are chosen since they are quite efficient in solving multi-modal optimization problems. These classified images are then segmented using spatial features of the water region to extract the river. From the results obtained, we evaluate the performance of the methods and conclude that incorporating region based image segmentation along with clustering algorithms provides accurate and reliable approach for the extraction of water covered region.
Resumo:
This paper considers the problem of identifying the footprints of communication of multiple transmitters in a given geographical area. To do this, a number of sensors are deployed at arbitrary but known locations in the area, and their individual decisions regarding the presence or absence of the transmitters' signal are combined at a fusion center to reconstruct the spatial spectral usage map. One straightforward scheme to construct this map is to query each of the sensors and cluster the sensors that detect the primary's signal. However, using the fact that a typical transmitter footprint map is a sparse image, two novel compressive sensing based schemes are proposed, which require significantly fewer number of transmissions compared to the querying scheme. A key feature of the proposed schemes is that the measurement matrix is constructed from a pseudo-random binary phase shift applied to the decision of each sensor prior to transmission. The measurement matrix is thus a binary ensemble which satisfies the restricted isometry property. The number of measurements needed for accurate footprint reconstruction is determined using compressive sampling theory. The three schemes are compared through simulations in terms of a performance measure that quantifies the accuracy of the reconstructed spatial spectral usage map. It is found that the proposed sparse reconstruction technique-based schemes significantly outperform the round-robin scheme.