995 resultados para Solar arrays
Resumo:
Surface-enhanced Raman scattering (SERS) spectra from molecules adsorbed on the surface of vertically aligned gold nanorod arrays exhibit a variation in enhancement factor (EF) as a function of excitation wavelength that displays little correlation with the elastic optical properties of the surface. The key to understanding this lack of correlation and to obtaining agreement between experimental and calculated EF spectra lies with consideration of randomly distributed, sub-10 nm gaps between nanorods forming the substrate. Intense fields in these enhancement “hot spots” make a dominant contribution to the Raman scattering and have a very different spectral profile to that of the elastic optical response. Detailed modeling of the electric field enhancement at both excitation and scattering wavelengths was used to quantitatively predict both the spectral profile and the magnitude of the observed EF.
Resumo:
All extra-solar planet masses that have been derived spectroscopically are lower limits since the inclination of the orbit to our line-of-sight is unknown except for transiting systems. In theory, however, it is possible to determine the inclination angle, i, between the rotation axis of a star and an observer's line-of-sight from measurements of the projected equatorial velocity (v sin i), the stellar rotation period (P(rot)) and the stellar radius (R(*)). For stars which host planetary systems this allows the removal of the sin i dependency of extra-solar planet masses derived from spectroscopic observations under the assumption that the planetary orbits lie perpendicular to the stellar rotation axis.
We have carried out an extensive literature search and present a catalogue of v sin i, P(rot) and R(*) estimates for stars hosting extra-solar planets. In addition, we have used Hipparcos parallaxes and the Barnes-Evans relationship to further supplement the R(*) estimates obtained from the literature. Using this catalogue, we have obtained sin i estimates using a Markov-chain Monte Carlo analysis. This technique allows proper 1 Sigma two-tailed confidence limits to be placed on the derived sin i's along with the transit probability for each planet to be determined.
While we find that a small proportion of systems yield sin i's significantly greater than 1, most likely due to poor P(rot) estimations, the large majority are acceptable. We are further encouraged by the cases where we have data on transiting systems, as the technique indicates inclinations of similar to 90 degrees and high transit probabilities. In total, we are able to estimate the true masses of 133 extra-solar planets. Of these 133 extra-solar planets, only six have revised masses that place them above the 13M(J) deuterium burning limit; four of those six extra-solar planet candidates were already suspected to lie above the deuterium burning limit before correcting their masses for the sin i dependency. Our work reveals a population of high-mass extra-solar planets with low eccentricities, and we speculate that these extra-solar planets may represent the signature of different planetary formation mechanisms at work. Finally, we discuss future observations that should improve the robustness of this technique.
Resumo:
There is an increasing demand to develop biosensor monitoring devices capable of biomarker profiling for predicting animal adulteration and detecting multiple chemical contaminants or toxins in food produce. Surface plasmon resonance (SPR) biosensors are label free detection systems that monitor the binding of specific biomolecular recognition elements with binding partners. Essential to this technology are the production of biochips where a selected binding partner, antibody, biomarker protein or low molecular weight contaminant, is immobilised. A micro-fluidic immobilisation device allowing the covalent attachment of up to 16 binding partners in a linear array on a single surface has been developed for compatibility with a prototype multiplex SPR analyser.
The immobilisation unit and multiplex SPR analyser were respectively evaluated in their ability to be fit-for-purpose for binding partner attachment and detection of high and low molecular weight molecules. The multiplexing capability of the dual technology was assessed using phycotoxin concentration analysis as a model system. The parent compounds of four toxin groups were immobilised within a single chip format and calibration curves were achieved. The chip design and SPR technology allowed the compartmentalisation of the binding interactions for each toxin group offering the added benefit of being able to distinguish between toxin families and perform concentration analysis. This model is particularly contemporary with the current drive to replace biological methods for phycotoxin screening.
Resumo:
The influence of solar variability on the climate of the Lateglacial and Holocene periods has been the subject of increasing discussion during the last decade. In the Mid-Holocene, several studies have identified cold/wet events that occur at ca 2800 cal. BP and a link with a reduction in solar activity, inferred from the C-14 record, has been postulated. We present results from a multi-proxy study of peat humification, plant macrofossils and testate amoebae from a raised bog at Glen West, northwest Ireland, that indicate that dry bog surface conditions were experienced in the north of Ireland at the time of the solar anomaly starting at 2800 cal. BP. With the aid of C-14 wiggle-matching and tephrochronology, an abrupt shift to wetter conditions is dated to ca 2700 cal. BP, coinciding with a C-14 maximum but clearly post-dating the 2800 cal. BP event identified elsewhere in Europe. We explore the significance of this apparent lag in the Irish record, considering the possible role of the ocean in generating spatial and temporal complexities in the climate patterns of the North Atlantic region. We conclude that these complexities are likely to give rise to time-transgressive climate responses around the North Atlantic that will only be recognised by more critical chronological approaches.