996 resultados para Skew distribution
Resumo:
Blue (Callinectes sapidus)(Portunidae),lady (Ovalipes ocellatus)(Portunidae), and Atlantic rock (Cancer irroratus) (Cancridae) crabs inhabit estuaries on the northeast United States coast for parts or all of their life cycles. Their distributions overlap or cross during certain seasons. During a 1991–1994 monthly otter trawl survey in the Hudson-Raritan Estuary between New York and New Jersey, blue and lady crabs were collected in warmer months and Atlantic rock crabs in colder months. Sex ratios, male:female, of mature crabs were 1:2.0 for blue crabs, 1:3.1 for lady crabs, and 21.4:1 for Atlantic rock crabs. Crabs, 1286 in total, were subsampled for dietary analysis, and the dominant prey taxa for all crabs, by volume of foregut contents, were mollusks and crustaceans. The proportion of amphipods and shrimp in diets decreased as crab size increased. Trophic niche breadth was widest for blue crabs, narrower for lady crabs, and narrowest for Atlantic rock crabs. Trophic overlap was lowest between lady crabs and Atlantic rock crabs, mainly because of frequent consumption of the dwarf surfclam (Mulinia lateralis) by the former and the blue mussel (Mytilus edulis) by the latter. The result of cluster analysis showed that size class and location of capture of predators in the estuary were more influential on diet than the species or sex of the predators.
Resumo:
We examined the spatial and temporal distribution, abundance, and growth of young-of-the-year (YOY) Atlantic croaker (Micropogonias undulatus) in Delaware Bay, one of the northernmost estuaries in which they consistently occur along the east coast of the United States. Sampling in Delaware Bay and in tidal creeks in salt marshes adjacent to the bay with otter trawls, plankton nets and weirs, between April and November 1996–99, collected approximately 85,000 YOY. Ingress of each year class into the bay and tidal creeks consistently occurred in the fall, and the first few YOY appeared in August. Larvae as small as 2–3 mm TL were collected in September and October 1996. Epibenthic individuals <25 mm TL were present each fall and again during spring of each year, but not in 1996 when low water temperatures in January and February apparently caused widespread mortality, resulting in their absence the following spring and summer. In 1998 and 1999, a second size class of smaller YOY entered the bay and tidal creeks in June. When YOY survived the winter, there was no evidence of growth until after April. Then the YOY grew rapidly through the summer in all habitats (0.8–1.4 mm/d from May through August). In the bay, they were most abundant from June to August over mud sediments in oligohaline waters. They were present in both subtidal and intertidal creeks in the marshes where they were most abundant from April to June in the mesohaline portion of the lower bay. The larger YOY began egressing out of the marshes in late summer, and the entire year class left the tidal creeks at lengths of 100–200 mm TL by October or November when the next year class was ingressing. These patterns of seasonal distribution and abundance in Delaware Bay and the adjacent marshes are similar to those observed in more southern estuaries along the east coast; however, growth is faster—in keeping with that in other northern estuaries.
Resumo:
The spotted seatrout (Cynoscion nebulosus) is one of the most sought after recreational fish in Florida Bay, and it spends its entire life history within the bay (Rutherford et al.,1989b). The biology of adult spotted seatrout in Florida Bay is well known (Rutherford et al., 1982, 1989b) as is the distribution and abundance of juveniles within the bay. The habitats and diets of juveniles are well documented (Hettler, 1989; Chester and Thayer, 1990; Thayer et al., 1999; Florida Department of Environmental Protection1). Nevertheless, the spatial and temporal spawning habits of spotted seatrout and the distribution of larvae have only been partially described (Powell et al., 1989; Rutherford et al., 1989a).
Resumo:
Between March 2000 and April 2001 two commercial fishing vessels fished for toothfish (Dissostichus eleginoides) off South Georgia using pots. A significant number of lithodid crabs (three species of Paralomis spp.) were caught as bycatch. Paralomis spinosissima occurred in shallow water, generally shallower than 700 m. Paralomis anamerae, not previously reported from this area and therefore representing a considerable southerly extension in the reported geographic range of this species, had an intermediate depth distribution from 400 to 800 m. Paralomis formosa was present in shallow waters but reached much higher catch levels (and, presumably, densities) between 800 and 1400 m. Differences were also noted in depth distribution of the sexes and size of crabs. Depth, soak time, and area were found to significantly influence crab catch rates. Few crabs (3% of P. spinosissima and 7% of P. formosa) were males above the legal size limit and could therefore be retained. All other crabs were discarded. Most crabs (>99% of P. formosa, >97% of P. spinosissima, and >90% of P. anamerae) were lively on arrival on deck and at subsequent discard. Mortality rates estimated from re-immersion experiments indicated that on the vessel where pots were emptied directly onto the factory conveyor belt 78–89% of crabs would survive discarding, whereas on the vessel where crabs were emptied down a vertical chute prior to being sorted, survivorship was 38–58%. Of the three, P. anamerae was the most vulnerable to handling onboard and sub-sequent discarding. Paralomis spinosissima seemed more vulnerable than P. formosa.