1000 resultados para Seismology Europe


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The combination of virulence gene and antimicrobial resistance gene typing using DNA arrays is a recently developed genomics-based approach to bacterial molecular epidemiology. We have now applied this technology to 523 Salmonella enterica subsp. enterica strains collected from various host sources and public health and veterinary institutes across nine European countries. The strain set included the five predominant Salmonella serovars isolated in Europe (Enteritidis, Typhimurium, Infantis, Virchow, and Hadar). Initially, these strains were screened for 10 potential virulence factors (avrA, ssaQ, mgtC, siiD, sopB, gipA, sodC1, sopE1, spvC, and bcfC) by polymerase chain reaction. The results indicated that only 14 profiles comprising these genes (virulotypes) were observed throughout Europe. Moreover, most of these virulotypes were restricted to only one (n = 9) or two (n = 4) serovars. The data also indicated that the virulotype did not vary significantly with host source or geographical location. Subsequently, a representative subset of 77 strains was investigated using a microarray designed to detect 102 virulence and 49 resistance determinants. The results confirmed and extended the previous observations using the virulo-polymerase chain reaction screen. Strains belonging to the same serovar grouped together, indicating that the broader virulence-associated gene complement corresponded with the serovar. There were, however, some differences in the virulence gene profiles between strains belonging to an individual serovar. This variation occurred primarily within those virulence genes that were prophage encoded, in fimbrial clusters or in the virulence plasmid. It seems likely that such changes enable Salmonella to adapt to different environmental conditions, which might be reflected in serovar-specific ecology. In this strain subset a number of resistance genes were detected and were serovar restricted to a varying degree. Once again the profiles of those genes encoding resistance were similar or the same for each serovar in all hosts and countries investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New crop cultivars will be required for a changing climate characterised by increased summer drought and heat stress in Europe. However, the uncertainty in climate predictions poses a challenge to crop scientists and breeders who have limited time and resources and must select the most appropriate traits for improvement. Modelling is a powerful tool to quantify future threats to crops and hence identify targets for improvement. We have used a wheat simulation model combined with local-scale climate scenarios to predict impacts of heat stress and drought on winter wheat in Europe. Despite the lower summer precipitation projected for 2050s across Europe, relative yield losses from drought is predicted to be smaller in the future, because wheat will mature earlier avoiding severe drought. By contrast, the risk of heat stress around flowering will increase, potentially resulting in substantial yield losses for heat sensitive cultivars commonly grown in northern Europe.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analysis of the climate of precipitation extremes as simulated by six European regional climate models (RCMs) is undertaken in order to describe/quantify future changes and to examine/interpret differences between models. Each model has adopted boundary conditions from the same ensemble of global climate model integrations for present (1961–1990) and future (2071–2100) climate under the Intergovernmental Panel on Climate Change A2 emission scenario. The main diagnostics are multiyear return values of daily precipitation totals estimated from extreme value analysis. An evaluation of the RCMs against observations in the Alpine region shows that model biases for extremes are comparable to or even smaller than those for wet day intensity and mean precipitation. In winter, precipitation extremes tend to increase north of about 45°N, while there is an insignificant change or a decrease to the south. In northern Europe the 20-year return value of future climate corresponds to the 40- to 100-year return value of present climate. There is a good agreement between the RCMs, and the simulated change is similar to a scaling of present-day extremes by the change in average events. In contrast, there are large model differences in summer when RCM formulation contributes significantly to scenario uncertainty. The model differences are well explained by differences in the precipitation frequency and intensity process, but in all models, extremes increase more or decrease less than would be expected from the scaling of present-day extremes. There is evidence for a component of the change that affects extremes specifically and is consistent between models despite the large variation in the total response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study presents a model intercomparison of four regional climate models (RCMs) and one variable resolution atmospheric general circulation model (AGCM) applied over Europe with special focus on the hydrological cycle and the surface energy budget. The models simulated the 15 years from 1979 to 1993 by using quasi-observed boundary conditions derived from ECMWF re-analyses (ERA). The model intercomparison focuses on two large atchments representing two different climate conditions covering two areas of major research interest within Europe. The first is the Danube catchment which represents a continental climate dominated by advection from the surrounding land areas. It is used to analyse the common model error of a too dry and too warm simulation of the summertime climate of southeastern Europe. This summer warming and drying problem is seen in many RCMs, and to a less extent in GCMs. The second area is the Baltic Sea catchment which represents maritime climate dominated by advection from the ocean and from the Baltic Sea. This catchment is a research area of many studies within Europe and also covered by the BALTEX program. The observed data used are monthly mean surface air temperature, precipitation and river discharge. For all models, these are used to estimate mean monthly biases of all components of the hydrological cycle over land. In addition, the mean monthly deviations of the surface energy fluxes from ERA data are computed. Atmospheric moisture fluxes from ERA are compared with those of one model to provide an independent estimate of the convergence bias derived from the observed data. These help to add weight to some of the inferred estimates and explain some of the discrepancies between them. An evaluation of these biases and deviations suggests possible sources of error in each of the models. For the Danube catchment, systematic errors in the dynamics cause the prominent summer drying problem for three of the RCMs, while for the fourth RCM this is related to deficiencies in the land surface parametrization. The AGCM does not show this drying problem. For the Baltic Sea catchment, all models similarily overestimate the precipitation throughout the year except during the summer. This model deficit is probably caused by the internal model parametrizations, such as the large-scale condensation and the convection schemes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Within a changing climate, Mediterranean ‘Garrigue’ xerophytes are increasingly recommended as suitable urban landscape plants in north-west Europe, based on their capacity to tolerate high temperature and reduced water availability during summer. Such species, however, have a poor reputation for tolerating waterlogged soils; paradoxically a phenomenon that may also increase in north-west Europe due to predictions for both higher volumes of winter precipitation, and short, but intensive periods of summer rainfall. This study investigated flooding tolerance in four landscape ‘Garrigue’ species, Stachys byzantina, Cistus × hybridus, Lavandula angustifolia and Salvia officinalis. Despite evolving in a dry habitat, the four species tested proved remarkably resilient to flooding. All species survived 17 days flooding in winter, with Stachys and Lavandula also surviving equivalent flooding duration during summer. Photosynthesis and biomass production, however, were strongly inhibited by flooding although the most tolerant species, Stachys quickly restored its photosynthetic capacity on termination of flooding. Overall, survival rates were comparable to previous studies on other terrestrial (including wetland) species. Subsequent experiments using Salvia (a species we identified as ‘intermediate’ in tolerance) clearly demonstrated adaptations to waterlogging, e.g. acclimation against anoxia when pre-treated with hypoxia. Despite anecdotal information to the contrary, we found no evidence to suggest that these xerophytic species are particularly intolerant of waterlogging. Other climatic and biotic factors may restrict the viability and distribution of these species within the urban conurbations of north-west Europe, but we believe increased incidence of flooding per se should not preclude their consideration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is vol. I of my two-volume study of the nuclear strategies/strategy preferences of NATO collectively, and individually of Britain, France, and West Germany in the Cold War. It shows that NATO strategy was a fragile compromise, and that these three countries, all within range of Soviet medium/intermediate range nuclear missiles and thus with less geostrategic difference than in previous military threat contexts, had wildly divergent strategies/preferences which cannot be explained merely by geography. It raises the question of what made them so different, addressed in Volume II "Nuclear Mentalities" (q.v.)