1000 resultados para SPECTRAL IRRADIANCE CALIBRATION
Resumo:
The Highway Safety Manual is the national safety manual that provides quantitative methods for analyzing highway safety. The HSM presents crash modification factors related to work zone characteristics such as work zone duration and length. These crash modification factors were based on high-impact work zones in California. Therefore there was a need to use work zone and safety data from the Midwest to calibrate these crash modification factors for use in the Midwest. Almost 11,000 Missouri freeway work zones were analyzed to derive a representative and stratified sample of 162 work zones. The 162 work zones was more than four times the number of work zones used in the HSM. This dataset was used for modeling and testing crash modification factors applicable to the Midwest. The dataset contained work zones ranging from 0.76 mile to 9.24 miles and with durations from 16 days to 590 days. A combined fatal/injury/non-injury model produced a R2 fit of 0.9079 and a prediction slope of 0.963. The resulting crash modification factors of 1.01 for duration and 0.58 for length were smaller than the values in the HSM. Two practical application examples illustrate the use of the crash modification factors for comparing alternate work zone setups.
Resumo:
En la actualidad, las cooperativas recolectan, seleccionan, tratan y separan la fruta según su calibre (peso, diámetro máximo, medio y/o mínimo) para que esta llegue al consumidor final según la categoría (calibre). Para poder competir en un mercado cada vez más exigente en calidad y precios, se requieren sistemas de clasificación automáticos que nos permitan obtener óptimos resultados con altos niveles de producción y productividad. Para realizar estas tareas existen calibradoras industriales que pesan la fruta mediante células de carga y con el peso obtenido las clasifican asignando las piezas a su salida correspondiente (mesa de confección) a través de un sistema de electroimanes. Desafortunadamente el proceso de calibración de la fruta por peso no es en absoluto fiable ya que en este proceso no se considera el grosor de la piel, contenido de agua, de azúcar u otros factores altamente relevantes que influyen considerablemente en los resultados finales. El objeto de este proyecto es el de evolucionar las existentes calibradoras de fruta instalando un sistema industrial de visión artificial (rápido y robusto) que trabaje en un rango de espectro Infrarrojo (mayor fiabilidad) proporcionando óptimos resultados finales en la clasificación de las frutas, verduras y hortalizas. De este modo, el presente proyecto ofrece la oportunidad de mejorar el rendimiento de la línea de clasificación de frutas, aumentando la velocidad, disminuyendo pérdidas en tiempo y error humano y mejorando indiscutiblemente la calidad del producto final deseada por los consumidores.
Resumo:
Fluorescence resonance energy transfer (FRET) allows the user to investigate interactions between fluorescent partners. One crucial issue when calculating sensitized emission FRET is the correction for spectral bleed-throughs (SBTs), which requires to calculate the ratios between the intensities in the FRET and in the donor or acceptor settings, when only the donor or acceptor are present. Theoretically, SBT ratios should be constant. However, experimentally, these ratios can vary as a function of fluorophore intensity, and assuming constant values may hinder precise FRET calculation. One possible cause for such a variation is the use of a microscope set-up with different photomultipliers for the donor and FRET channels, a set-up allowing higher speed acquisitions on very dynamic fluorescent molecules in living cells. Herein, we show that the bias introduced by the differential response of the two PMTs can be circumvented by a simple modeling of the SBT ratios as a function of fluorophore intensity. Another important issue when performing FRET is the localization of FRET within the cell or a population of cells. We hence developed a freely available ImageJ plug-in, called PixFRET, that allows a simple and rapid determination of SBT parameters and the display of normalized FRET images. The usefulness of this modeling and of the plug-in are exemplified by the study of FRET in a system where two interacting nuclear receptors labeled with ECFP and EYFP are coexpressed in living cells.
Resumo:
Based on results of an evaluation performed during the winter of 1985-86, six Troxler 3241-B Asphalt Content Gauges were purchased for District use in monitoring project asphalt contents. Use of these gauges will help reduce the need for chemical based extractions. Effective use of the gauges depends on the accurate preparation and transfer of project mix calibrations from the Central Lab to the Districts. The objective of this project was to evaluate the precision and accuracy of a gauge in determining asphalt contents and to develop a mix calibration transfer procedure for implementation during the 1987 construction. The first part of the study was accomplished by preparing mix calibrations in the Central Lab gauge and taking multiple measurements of a sample with known asphalt content. The second part was accomplished by preparing transfer pans, obtaining count data on the pans using each gauge, and transferring calibrations from one gauge to another through the use of calibration transfer equations. The transferred calibrations were tested by measuring samples with a known asphalt content. The study established that the Troxler 3241-B Asphalt Content Gauge yields results of acceptable accuracy and precision as evidenced by a standard deviation of 0.04% asphalt content on multiple measurements of the same sample. The calibration transfer procedure proved feasible and resulted in the calibration transfer portion of Materials I.M. 335 - Method of Test For Determining the Asphalt Content of Bituminous Mixtures by the Nuclear Method.
Resumo:
Understanding the influence of pore space characteristics on the hydraulic conductivity and spectral induced polarization (SIP) response is critical for establishing relationships between the electrical and hydrological properties of surficial sedimentary deposits. Here, we present the results of laboratory SIP measurements on saturated quartz samples with granulometric characteristics ranging from fine sand to fine gravel. We alter the pore characteristics using three principal methods: (i) variation of the grain sizes, (ii) changing the degree of compaction, and (iii) changing the level of sorting. We then examine how these changes affect both the SIP response and the hydraulic conductivity. In general, the results indicate a clear connection between the applied changes in pore characteristics and the SIP response. In particular, we observe a systematic correlation between the hydraulic conductivity and the relaxation time of the Cole-Cole model describing the observed SIP effect for the whole range of considered grain sizes.
Resumo:
In the previous study, moisture loss indices were developed based on the field measurements from one CIR-foam and one CIR-emulsion construction sites. To calibrate these moisture loss indices, additional CIR construction sites were monitored using embedded moisture and temperature sensors. In addition, to determine the optimum timing of an HMA overlay on the CIR layer, the potential of using the stiffness of CIR layer measured by geo-gauge instead of the moisture measurement by a nuclear gauge was explored. Based on the monitoring the moisture and stiffness from seven CIR project sites, the following conclusions are derived: 1. In some cases, the in-situ stiffness remained constant and, in other cases, despite some rainfalls, stiffness of the CIR layers steadily increased during the curing time. 2. The stiffness measured by geo-gauge was affected by a significant amount of rainfall. 3. The moisture indices developed for CIR sites can be used for predicting moisture level in a typical CIR project. The initial moisture content and temperature were the most significant factors in predicting the future moisture content in the CIR layer. 4. The stiffness of a CIR layer is an extremely useful tool for contractors to use for timing their HMA overlay. To determine the optimal timing of an HMA overlay, it is recommended that the moisture loss index should be used in conjunction with the stiffness of the CIR layer.
Resumo:
The objective of this work was to evaluate the application of the spectral-temporal response surface (STRS) classification method on Moderate Resolution Imaging Spectroradiometer (MODIS, 250 m) sensor images in order to estimate soybean areas in Mato Grosso state, Brazil. The classification was carried out using the maximum likelihood algorithm (MLA) adapted to the STRS method. Thirty segments of 30x30 km were chosen along the main agricultural regions of Mato Grosso state, using data from the summer season of 2005/2006 (from October to March), and were mapped based on fieldwork data, TM/Landsat-5 and CCD/CBERS-2 images. Five thematic classes were considered: Soybean, Forest, Cerrado, Pasture and Bare Soil. The classification by the STRS method was done over an area intersected with a subset of 30x30-km segments. In regions with soybean predominance, STRS classification overestimated in 21.31% of the reference values. In regions where soybean fields were less prevalent, the classifier overestimated 132.37% in the acreage of the reference. The overall classification accuracy was 80%. MODIS sensor images and the STRS algorithm showed to be promising for the classification of soybean areas in regions with the predominance of large farms. However, the results for fragmented areas and smaller farms were less efficient, overestimating soybean areas.
Resumo:
We consider a model for a damped spring-mass system that is a strongly damped wave equation with dynamic boundary conditions. In a previous paper we showed that for some values of the parameters of the model, the large time behaviour of the solutions is the same as for a classical spring-mass damper ODE. Here we use spectral analysis to show that for other values of the parameters, still of physical relevance and related to the effect of the spring inner viscosity, the limit behaviours are very different from that classical ODE
Resumo:
Neuronal networks in vitro are prominent systems to study the development of connections in living neuronal networks and the interplay between connectivity, activity and function. These cultured networks show a rich spontaneous activity that evolves concurrently with the connectivity of the underlying network. In this work we monitor the development of neuronal cultures, and record their activity using calcium fluorescence imaging. We use spectral analysis to characterize global dynamical and structural traits of the neuronal cultures. We first observe that the power spectrum can be used as a signature of the state of the network, for instance when inhibition is active or silent, as well as a measure of the network's connectivity strength. Second, the power spectrum identifies prominent developmental changes in the network such as GABAA switch. And third, the analysis of the spatial distribution of the spectral density, in experiments with a controlled disintegration of the network through CNQX, an AMPA-glutamate receptor antagonist in excitatory neurons, reveals the existence of communities of strongly connected, highly active neurons that display synchronous oscillations. Our work illustrates the interest of spectral analysis for the study of in vitro networks, and its potential use as a network-state indicator, for instance to compare healthy and diseased neuronal networks.