992 resultados para Reverse Monte Carlo
Resumo:
A new method for sampling the exact (within the nodal error) ground state distribution and nondiflPerential properties of multielectron systems is developed and applied to firstrow atoms. Calculated properties are the distribution moments and the electronic density at the nucleus (the 6 operator). For this purpose, new simple trial functions are developed and optimized. First, using Hydrogen as a test case, we demonstrate the accuracy of our algorithm and its sensitivity to error in the trial function. Applications to first row atoms are then described. We obtain results which are more satisfactory than the ones obtained previously using Monte Carlo methods, despite the relative crudeness of our trial functions. Also, a comparison is made with results of highly accurate post-Hartree Fock calculations, thereby illuminating the nodal error in our estimates. Taking into account the CPU time spent, our results, particularly for the 8 operator, have a relatively large variance. Several ways of improving the eflSciency together with some extensions of the algorithm are suggested.
Resumo:
Background: Lung cancer (LC) is the leading cause of cancer death in the developed world. Most cancers are associated with tobacco smoking. A primary hope for reducing lung cancer has been prevention of smoking and successful smoking cessation programs. To date, these programs have not been as successful as anticipated. Objective: The aim of the current study was to evaluate whether lung cancer screening combining low dose computed tomography with autofluorescence bronchoscopy (combined CT & AFB) is superior to CT or AFB screening alone in improving lung cancer specific survival. In addition, the extent of improvement and ideal conditions for combined CT & AFB screening were evaluated. Methods: We applied decision analysis and Monte Carlo simulation modeling using TreeAge Software to evaluate our study aims. Histology- and stage specific probabilities of lung cancer 5-year survival proportions were taken from Surveillance and Epidemiologic End Results (SEER) Registry data. Screeningassociated data was taken from the US NCI Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial (PLCO), National Lung Screening Trial (NLST), and US NCI Lung Screening Study (LSS), other relevant published data and expert opinion. Results: Decision Analysis - Combined CT and AFB was the best approach at Improving 5-year survival (Overall Expected Survival (OES) in the entire screened population was 0.9863) and in lung cancer patients only (Lung Cancer Specific Expected Survival (LOSES) was 0.3256). Combined screening was slightly better than CT screening alone (OES = 0.9859; LCSES = 0.2966), and substantially better than AFB screening alone (OES = 0.9842; LCSES = 0.2124), which was considerably better than no screening (OES = 0.9829; LCSES = 0.1445). Monte Carlo simulation modeling revealed that expected survival in the screened population and lung cancer patients is highest when screened using CT and combined CT and AFB. CT alone and combined screening was substantially better than AFB screening alone or no screening. For LCSES, combined CT and AFB screening is significantly better than CT alone (0.3126 vs. 0.2938, p< 0.0001). Conclusions: Overall, these analyses suggest that combined CT and AFB is slightly better than CT alone at improving lung cancer survival, and both approaches are substantially better than AFB screening alone or no screening.