994 resultados para Resource Productivity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The estimation of the long-term wind resource at a prospective site based on a relatively short on-site measurement campaign is an indispensable task in the development of a commercial wind farm. The typical industry approach is based on the measure-correlate-predict �MCP� method where a relational model between the site wind velocity data and the data obtained from a suitable reference site is built from concurrent records. In a subsequent step, a long-term prediction for the prospective site is obtained from a combination of the relational model and the historic reference data. In the present paper, a systematic study is presented where three new MCP models, together with two published reference models �a simple linear regression and the variance ratio method�, have been evaluated based on concurrent synthetic wind speed time series for two sites, simulating the prospective and the reference site. The synthetic method has the advantage of generating time series with the desired statistical properties, including Weibull scale and shape factors, required to evaluate the five methods under all plausible conditions. In this work, first a systematic discussion of the statistical fundamentals behind MCP methods is provided and three new models, one based on a nonlinear regression and two �termed kernel methods� derived from the use of conditional probability density functions, are proposed. All models are evaluated by using five metrics under a wide range of values of the correlation coefficient, the Weibull scale, and the Weibull shape factor. Only one of all models, a kernel method based on bivariate Weibull probability functions, is capable of accurately predicting all performance metrics studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper examines the impact of regulatory reform on productivity growth and its components for Indian banks in 1992-2009. We estimate parametric and non-parametric efficiency frontiers, followed by Divisia and Malmquist indexes of Total Factor Productivity respectively. To account for technology heterogeneity among ownership types we utilise a metafrontier approach. Results are consistent across methodologies and show sustained productivity growth, driven mainly by technological progress. Furthermore, results indicate that different ownership types react differently to changes in the operating environment. The position of foreign banks becomes increasingly dominant and their production technology becomes the best practice in the industry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crop production is inherently sensitive to fluctuations in weather and climate and is expected to be impacted by climate change. To understand how this impact may vary across the globe many studies have been conducted to determine the change in yield of several crops to expected changes in climate. Changes in climate are typically derived from a single to no more than a few General Circulation Models (GCMs). This study examines the uncertainty introduced to a crop impact assessment when 14 GCMs are used to determine future climate. The General Large Area Model for annual crops (GLAM) was applied over a global domain to simulate the productivity of soybean and spring wheat under baseline climate conditions and under climate conditions consistent with the 2050s under the A1B SRES emissions scenario as simulated by 14 GCMs. Baseline yield simulations were evaluated against global country-level yield statistics to determine the model's ability to capture observed variability in production. The impact of climate change varied between crops, regions, and by GCM. The spread in yield projections due to GCM varied between no change and a reduction of 50%. Without adaptation yield response was linearly related to the magnitude of local temperature change. Therefore, impacts were greatest for countries at northernmost latitudes where warming is predicted to be greatest. However, these countries also exhibited the greatest potential for adaptation to offset yield losses by shifting the crop growing season to a cooler part of the year and/or switching crop variety to take advantage of an extended growing season. The relative magnitude of impacts as simulated by each GCM was not consistent across countries and between crops. It is important, therefore, for crop impact assessments to fully account for GCM uncertainty in estimating future climates and to be explicit about assumptions regarding adaptation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Climate change is a serious threat to crop productivity in regions that are already food insecure. We assessed the projected impacts of climate change on the yield of eight major crops in Africa and South Asia using a systematic review and meta-analysis of data in 52 original publications from an initial screen of 1144 studies. Here we show that the projected mean change in yield of all crops is − 8% by the 2050s in both regions. Across Africa, mean yield changes of − 17% (wheat), − 5% (maize), − 15% (sorghum) and − 10% (millet) and across South Asia of − 16% (maize) and − 11% (sorghum) were estimated. No mean change in yield was detected for rice. The limited number of studies identified for cassava, sugarcane and yams precluded any opportunity to conduct a meta-analysis for these crops. Variation about the projected mean yield change for all crops was smaller in studies that used an ensemble of > 3 climate (GCM) models. Conversely, complex simulation studies that used biophysical crop models showed the greatest variation in mean yield changes. Evidence of crop yield impact in Africa and South Asia is robust for wheat, maize, sorghum and millet, and either inconclusive, absent or contradictory for rice, cassava and sugarcane.