992 resultados para Reperfusion therapy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Social and economical development is closely associated with technological innovation and a well-developed biotechnological industry. In the last few years, Brazil`s scientific production has been steadily increasing; however, the number of patents is lagging behind, with technological and translational research requiring governmental incentive and reinforcement. The Cell and Molecular Therapy Center (NUCEL) was created to develop activities in the translational research field, addressing concrete problems found in biomedical and veterinary areas and actively searching for solutions by employing a genetic engineering approach to generate cell lines over-expressing recombinant proteins to be transferred to local biotech companies, aiming at furthering the development of a national competence for local production of biopharmaceuticals of widespread use and of life-saving importance. To this end, mammalian cell engineering technologies were used to generate cell lines over-expressing several different recombinant proteins of biomedical and biotechnological interest, namely, recombinant human Amylin/IAPP for diabetes treatment, human FVIII and FIX clotting factors for hemophilia, human and bovine FSH for fertility and reproduction, and human bone repair proteins (BMPs). Expression of some of these proteins is also being sought with the baculovirus/insect cell system (BEVS) which, in many cases, is able to deliver high-yield production of recombinant proteins with biological activity comparable to that of mammalian systems, but in a much more cost-effective manner. Transfer of some of these recombinant products to local Biotech companies has been pursued by taking advantage of the Sao Paulo State Foundation (FAPESP) and Federal Government (FINEP, CNPq) incentives for joint Research Development and Innovation partnership projects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Several methods have been utilized to prevent pericardial and retrosternal adhesions, but none of them evaluated the mesothelial regenerative hypothesis. There are evidences that the mesothelial trauma reduces pericardial fibrinolytic capability and induces an adhesion process. Keratinocyte growth factor (KGF) has proven to improve mesothelial cells proliferation. This study investigated the influence of keratinocyte growth factor in reducing post-surgical adhesions. Methods: Twelve pigs were operated and an adhesion protocol was employed. Following a stratified randomization, the animals received a topical application of KGF or saline. At 8 weeks, intrapericardial adhesions were evaluated and a severity score was established. The time spent to dissect the adhesions and the amount of sharp dissection used, were recorded. Histological sections were stained with sirius red and morphometric analyses were assessed with a computer-assisted image analysis system. Results: The severity score was lower in the KGF group than in the control group (11.5 vs 17, p = 0.005). The dissection time was lower in the KGF group (9.2 +/- 1.4 min vs 33.9 +/- 9.2 min, p = 0.004) and presented a significant correlation with the severity score (r = 0.83, p = 0.001). A significantly less sharp dissection was also required in the KGF group. Also, adhesion area and adhesion collagen were significantly tower in the KGF group than in the control group. Conclusion: The simulation of pericardial cells with KGF reduced the intensity of postoperative adhesions and facilitated the re-operation. This study suggests that the mesothelial regeneration is the new horizon in anti-adhesion therapies. (C) 2008 European Association for Cardio-Thoracic Surgery. Published by Elsevier B.V. All rights reserved.