993 resultados para Reflexive knowledge
Resumo:
The quality of information provision influences considerably knowledge construction driven by individual users’ needs. In the design of information systems for e-learning, personal information requirements should be incorporated to determine a selection of suitable learning content, instructive sequencing for learning content, and effective presentation of learning content. This is considered as an important part of instructional design for a personalised information package. The current research reveals that there is a lack of means by which individual users’ information requirements can be effectively incorporated to support personal knowledge construction. This paper presents a method which enables an articulation of users’ requirements based on the rooted learning theories and requirements engineering paradigms. The user’s information requirements can be systematically encapsulated in a user profile (i.e. user requirements space), and further transformed onto instructional design specifications (i.e. information space). These two spaces allow the discovering of information requirements patterns for self-maintaining and self-adapting personalisation that enhance experience in the knowledge construction process.
Resumo:
This paper describes the design, implementation and testing of an intelligent knowledge-based supervisory control (IKBSC) system for a hot rolling mill process. A novel architecture is used to integrate an expert system with an existing supervisory control system and a new optimization methodology for scheduling the soaking pits in which the material is heated prior to rolling. The resulting IKBSC system was applied to an aluminium hot rolling mill process to improve the shape quality of low-gauge plate and to optimise the use of the soaking pits to reduce energy consumption. The results from the trials demonstrate the advantages to be gained from the IKBSC system that integrates knowledge contained within data, plant and human resources with existing model-based systems. (c) 2005 Elsevier Ltd. All rights reserved.