998 resultados para Rat BDL


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Augmented glucose-stimulated insulin secretion (GSIS) is an adaptive mechanism exhibited by pancreatic islets from insulin-resistant animal models. Gap junction proteins have been proposed to contribute to islet function. As such, we investigated the expression of connexin 36 (Cx36), connexin 43 (Cx43), and the glucose transporter Glut2 at mRNA and protein levels in pancreatic islets of dexamethasone (DEX)-induced insulin-resistant rats. Study rats received daily injections of DEX (1 mg/kg body mass, i.p.) for 5 days, whereas control rats (CTL) received saline solution. DEX rats exhibited peripheral insulin resistance, as indicated by the significant postabsorptive insulin levels and by the constant rate for glucose disappearance (K-ITT). GSIS was significantly higher in DEX islets (1.8-fold in 16.7 mmol/L glucose vs. CTL, p < 0.05). A significant increase of 2.25-fold in islet area was observed in DEX vs. CTL islets (p < 0.05). Cx36 mRNA expression was significantly augmented, Cx43 diminished, and Glut2 mRNA was unaltered in islets of DEX vs. CTL (p < 0.05). Cx36 protein expression was 1.6-fold higher than that of CTL islets (p < 0.05). Glut2 protein expression was unaltered and Cx43 was not detected at the protein level. We conclude that DEX-induced insulin resistance is accompanied by increased GSIS and this may be associated with increase of Cx36 protein expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The population dynamics in the enteric connective tissues of eosinophils, mucosal mast cells (MMC), and in the mucosal epithelium of goblet cells were examined morphometrically in fixed ileal tissue of outbred Sprague Dawley rats during the first 32 days of infection with the tapeworm Hymenolepis diminuta. MMC and eosinophils were present in the lamina propria and submucosa; however, only eosinophils were also present in the muscularis externa. Eosinophilic infiltrate was first observed in the lamina propria at 15 days postinfection (dpi) and the numbers of eosinophils remained elevated through 32 dpi. Initial mucosal mastocytosis was detected on 6 dpi and MC numbers continued to rise over the study period without reaching a plateau. Goblet cell hyperplasia occurred only at 32 dpi. In contrast to some intestinal nematode infections where these same 3 cell types are associated with the host's expulsion responses, H. diminuta is not lost by a rapid host response in the outbred Sprague Dawley rat strain used in these experiments. We suggest that either the induction of hyperplasia of these host effector cells in ileum tissue during H. diminuta infection is not capable of triggering parasite rejection mechanisms, or the function of the induced hyperplasia is necessary for some as yet unassociated physiological or tissue architecture change in the host's intestine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work were synthesized and characterized the materials mesoporous SBA-15 and Al- SBA-15, Si / Al = 25, 50 and 75, discovered by researchers at the University of California- Santa Barbara, USA, with pore diameters ranging from 2 to 30 nm and wall thickness from 3.1 to 6.4 nm, making these promising materials in the field of catalysis, particularly for petroleum refining (catalytic cracking), as their mesopores facilitate access of the molecules constituting the oil to active sites, thereby increasing the production of hydrocarbons in the range of light and medium. To verify that the materials used as catalysts were successfully synthesized, they were characterized using techniques of X-ray diffraction (XRD), absorption spectroscopy in the infrared Fourier transform (FT-IR) and adsorption nitrogen (BET). Aiming to check the catalytic activity thereof, a sample of atmospheric residue oil (ATR) from the pole Guamaré-RN was performed the process by means of thermogravimetry and thermal degradation of catalytic residue. Upon the curves, it was observed a reduction in the onset temperature of the decomposition process of catalytic ATR. For the kinetic model proposed by Flynn-Wall yielded some parameters to determine the apparent activation energy of decomposition, being shown the efficiency of mesoporous materials, since there was a decrease in the activation energy for the reactions using catalysts. The ATR was also subjected to pyrolysis process using a pyrolyzer with gas chromatography coupled to a mass spectrometer. Through the chromatograms obtained, there was an increase in the yield of the compounds in the range of gasoline and diesel from the catalytic pyrolysis, with emphasis on Al-SBA-15 (Si / Al = 25), which showed a percentage higher than the other catalysts. These results are due to the fact that the synthesized materials exhibit specific properties for application in the process of pyrolysis of complex molecules and high molecular weight as constituents of the ATR

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction .The renal prostaglandins (PGs), vasodilators, preserve kidney function during increased activity of the renin-angiotensin system or renal sympathetic nerves (renal PG-dependent state [RPGD]). Ketoprofen (Ket) inhibits cyclooxygenase and, therefore, the synthesis of PGs. The aim of this study was to determine, in the rat, the action of Ket in the renal histology and function in a RPGD state (stress of anesthesia and hemorrhage). Material and Methods . Twenty male Wistar rats, anesthetized with sodium pentobarbital, were randomly divided into two groups: G1-control ( n = 10) and G2-Ket ( n = 10) submitted to arterial hemorrhage of 30% of volemia (estimated as 6% of body weight) three times (10% each 10 min), 65 min after anesthesia. G2 animals received Ket, 1.5 mg. kg -1 , venously, 5 min after anesthesia and 60 min before the first hemorrhage moment (first moment of the study [M1]). Medium arterial pressure (MAP), rectal temperature (T), and heart rate were monitored. G1 and G2 received para-aminohippurate sodium (PAH) and iothalamate sodium (IOT) solutions during the entire experimental time in order to determine clearance of PAH (effective renal plasma flow [ERPF]) and clearance of IOT (glomerular filtration rate [GFR]) without urine collection (determination of blood concentrations of PAH and IOT through the high-performance liquid chromatography), filtration fraction (FF), and renal vascular resistance (RVR). The animals were sacrificed in M3, 30 min after the third hemorrhage (M2) moment, and the kidneys and blood collected during the hemorrhage periods were utilized for histological study and determinations of hematocrit (Ht), serum creatinine (S Cr ), ERPF, GFR, FF, and RVR, respectively. Results . There were significant reductions of MAP, T, and Ht and a significant increase of S Cr . During the experiment, ERPF and GFR did not change, but ERPF was always higher in G1 than in G2. Ket did not alter FF, which increased in G1 over the duration of experiment. The Ket group had significantly higher RVR than the control group. The histology verified that both G1 and G2 were similar for tubular dilation and necrosis, but they were significantly different for tubular degeneration: G1 > G2. Conclusion . The changes observed in kidney histology probably were determined by hemorrhage and hypotension. Ket inhibited the synthesis of PGs and diminished tubular degeneration.