996 resultados para Random variability
Resumo:
We present a benchmark system for global vegetation models. This system provides a quantitative evaluation of multiple simulated vegetation properties, including primary production; seasonal net ecosystem production; vegetation cover; composition and height; fire regime; and runoff. The benchmarks are derived from remotely sensed gridded datasets and site-based observations. The datasets allow comparisons of annual average conditions and seasonal and inter-annual variability, and they allow the impact of spatial and temporal biases in means and variability to be assessed separately. Specifically designed metrics quantify model performance for each process, and are compared to scores based on the temporal or spatial mean value of the observations and a "random" model produced by bootstrap resampling of the observations. The benchmark system is applied to three models: a simple light-use efficiency and water-balance model (the Simple Diagnostic Biosphere Model: SDBM), the Lund-Potsdam-Jena (LPJ) and Land Processes and eXchanges (LPX) dynamic global vegetation models (DGVMs). In general, the SDBM performs better than either of the DGVMs. It reproduces independent measurements of net primary production (NPP) but underestimates the amplitude of the observed CO2 seasonal cycle. The two DGVMs show little difference for most benchmarks (including the inter-annual variability in the growth rate and seasonal cycle of atmospheric CO2), but LPX represents burnt fraction demonstrably more accurately. Benchmarking also identified several weaknesses common to both DGVMs. The benchmarking system provides a quantitative approach for evaluating how adequately processes are represented in a model, identifying errors and biases, tracking improvements in performance through model development, and discriminating among models. Adoption of such a system would do much to improve confidence in terrestrial model predictions of climate change impacts and feedbacks.
Resumo:
Ninety-four sites worldwide have sufficient resolution and dating to document the impact of millennial-scale climate variability on vegetation and fire regimes during the last glacial period. Although Dansgaard–Oeschger (D–O) cycles all show a basically similar gross structure, they vary in the magnitude and the length of the warm and cool intervals. We illustrate the geographic patterns in the climate-induced changes in vegetation by comparing D–O 6, D–O 8 and D–O 19. There is a strong response to both D–O warming events and subsequent cooling, most marked in the northern extratropics. Pollen records from marine cores from the northern extratropics confirm that there is no lag between the change in climate and the vegetation response, within the limits of the dating resolution (50–100 years). However, the magnitude of the change in vegetation is regionally specific and is not a simple function of either the magnitude or the duration of the change in climate as registered in Greenland ice cores. Fire regimes also show an initial immediate response to climate changes, but during cooling intervals there is a slow recovery of biomass burning after the initial reduction, suggesting a secondary control through the recovery of vegetation productivity. In the extratropics, vegetation changes are largely determined by winter temperatures while in the tropics they are largely determined by changes in plant-available water. Tropical vegetation records show changes corresponding to Heinrich Stadials but the response to D–O warming events is less marked than in the northern extratropics. There are very few high-resolution records from the Southern Hemisphere extratropics, but these records also show both a vegetation and fire response to millennial-scale climate variability. It is not yet possible to determine unequivocally whether terrestrial records reflect the asynchroneity apparent in the ice-core records.