993 resultados para RADIATIVE-TRANSFER


Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is shown from flux transfer event (FTE) occurrence statistics, observed as a function of MLT by the ISEE satellites, that recent 2-dimensional analytic theories of the effects of pulsed Petschek reconnection predict FTEs to contribute between 50 and 200 kV to the total reconnection voltage when the magnetosheath field points southward. The upper limit (200 kV) allows the possibility that FTEs provide all the antisunward transport of open field lines into the tail lobe. This range is compared with the voltages associated with series of FTEs signatures, as inferred from ground-based observations, which are in the range 10–60 kV. We conclude that the contribution could sometimes be made by a series of single, large events; however, the voltage is often likely to be contributed by several FTEs at different MLT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recurrence rate of flux transfer events (FTEs) observed near the dayside magnetopause is discussed. A survey of magnetopause observations by the ISEE satellites shows that the distribution of the intervals between FTE signatures has a mode value of 3 min, but is highly skewed, having upper and lower decile values of 1.5 min and 18.5 min, respectively. The mean value is found to be 8 min, consistent with previous surveys of magnetopause data. The recurrence of quasi-periodic events in the dayside auroral ionosphere is frequently used as evidence for an association with magnetopause FTEs, and the distribution of their repetition intervals should be matched to that presented here if such an association is to be confirmed. A survey of 1 year's 15-s data on the interplanetary magnetic field (IMF) suggests that the derived distribution could arise from fluctuations in the IMF Bz component, rather than from a natural oscillation frequency of the magnetosphere-ionosphere system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traditionally, the cusp has been described in terms of a time-stationary feature of the magnetosphere which allows access of magnetosheath-like plasma to low altitudes. Statistical surveys of data from low-altitude spacecraft have shown the average characteristics and position of the cusp. Recently, however, it has been suggested that the ionospheric footprint of flux transfer events (FTEs) may be identified as variations of the “cusp” on timescales of a few minutes. In this model, the cusp can vary in form between a steady-state feature in one limit and a series of discrete ionospheric FTE signatures in the other limit. If this time-dependent cusp scenario is correct, then the signatures of the transient reconnection events must be able, on average, to reproduce the statistical cusp occurrence previously determined from the satellite observations. In this paper, we predict the precipitation signatures which are associated with transient magnetopause reconnection, following recent observations of the dependence of dayside ionospheric convection on the orientation of the IMF. We then employ a simple model of the longitudinal motion of FTE signatures to show how such events can easily reproduce the local time distribution of cusp occurrence probabilities, as observed by low-altitude satellites. This is true even in the limit where the cusp is a series of discrete events. Furthermore, we investigate the existence of double cusp patches predicted by the simple model and show how these events may be identified in the data.