1000 resultados para Proyecto Fin de Carrera
Resumo:
El desarrollo del presente trabajo sigue, tanto una línea cronológica de las tareas realizadas, como una lógica, en la que se parte de un conocimiento mínimo de los sistemas espaciales hasta llegar al diseño completo de un Módulo de Cálculo de Potencia Eléctrica de un satélite para su aplicación en una instalación de diseño concurrente o CDF.
Resumo:
Este proyecto trata de diseñar el sistema eléctrico y de control de potencia de una maqueta del túnel aerodinámico ACLA-16 de la Universidad Politécnica de Madrid (UPM). Dicha maqueta se utiliza para estudiar el efecto de la capa límite atmosférica, debido a su importancia en el impacto sobre estructuras civiles. Primero se desarrolla una parte teórica sobre qué son los túneles aerodinámicos, las aplicaciones que tienen y conceptos básicos acerca de la capa límite atmosférica. Luego se analiza el diseño geométrico de la maqueta del túnel y se detallan los elementos que debe tener el sistema eléctrico. Además, se realiza una simulación por ordenador con un programa de CFD (Fluent) para comparar los resultados experimentales reales con los resultados numéricos de la simulación para comprobar si se pueden extraer resultados aceptables por ordenador y así ahorrar costes y tiempo en el estudio de ensayos.
Resumo:
El presente Proyecto Fin de Grado tiene como objetivo el estudio y caracterización del centelleo troposférico en ausencia de lluvia en la banda Ka de un enlace Tierra-satélite. Para ello se dispondrá de un equipo receptor situado en la Escuela Técnica Superior de Ingenieros de Telecomunicación. Los datos son emitidos desde el satélite EutelSat Hot Bird 13A a una frecuencia de 19,7 GHz. La primera parte del proyecto comienza con las bases teóricas de los distintos fenómenos que afectan a la propagación de un enlace satélite, mencionando los modelos de predicción más importantes. Se ha dado más importancia al apartado perteneciente al centelleo troposférico por ser el tema tratado en este proyecto. El estudio cuenta con datos del satélite durante 7 años comprendidos entre julio de 2006 a junio de 2013. Después del filtrado y el resto del tratamiento adecuado de los datos se han obtenido distintas distribuciones estadísticas que están relacionadas con el centelleo como la varianza. Más tarde se ha comparado la varianza experimental con parámetros meteorológicos obtenidos desde distintas bases de datos. El objetivo de esto ha sido discernir cuál de estos factores afecta en mayor medida a la intensidad de centelleo. Para ello se ha realizado la correlación entre la varianza y varios parámetros meteorológicos: temperatura, humedad relativa, humedad absoluta, índice de refracción húmedo, presión… Además se han realizado medidas de nubosidad en los que se ha clasificado las muestras dependiendo del tipo de nube presente en el cielo. A continuación se ha calculado la varianza mensual media y distribuciones acumuladas de ciertos modelos de predicción de centelleo, comparándolos gráficamente con las curvas experimentales. Estos modelos usan parámetros medidos en superficie por lo que se utilizarán algunos de los parámetros analizados en el capítulo anterior. Por último se expondrán las conclusiones sacadas a lo largo de la realización del proyecto y las posibles líneas de investigación futuras. ABSTRACT. The present Project has as the principal aim the study and characterization of tropospheric scintillation in lack of rain in the band Ka of an Earth-satellite link. It is provided for a receptor equipment located in the ETSIT. The data are broadcasted form the Eutelsat Hot Bird 13A satellite at the frecuency of 19,7 GHz. The beginning of the project starts with the theorical basis of the different phenomenons that affects to the propagation of a satellite link, naming the most important predictions models. The chapter referred to the scintillation has had more importance due to be the main topic in this project. The study deals with satellite data during 7 years between July 2006 to June 2013. After the filter and others treatments of the data, it has been getting different statistics distributions related to scintillation like variance. Later, the experimental variance has been compared with meteorological parameters obtained from different datasets. The purpose has been to decide which factor affects in a greater way to the scintillation intensity. For that it has been doing the correlation between variance and meteorological parameters: temperature, relative humidity, absolute humidity, air refractivity due to water vapour, pressure… Moreover, it has been doing cloudiness measurements in which the samples have been classified in order to the kind of cloud shown in the sky at that moment. Then it has been calculated the monthly averaged variance and the prediction model for cumulative distributions which has been compared with the experimental results. That models uses surface data that they will be uses some meteorological parameters analyzed in previous chapters. Finally it will be shown the conclusions obtained along the realization of the project and the possible ways of future research.
Resumo:
El objetivo del presente Proyecto Fin de Grado es la realización de una comparativa de los resultados obtenidos en las medidas de SAR (tasa de absorción específica) y potencia utilizando la normativa europea CENELEC (basada en la del IEC) y la americana FCC (basada en la del IEEE) para distintos dispositivos móviles duales. En primer lugar se ha realizado el estudio de sus características de potencia y de SAR, viendo la variación que hay con respecto a las distintas normativas y rangos de frecuencias. En algunos casos, aunque funcionan sin problema alguno en las diferentes bandas, la diferencia de niveles de emisiones obtenidos en las diferentes bandas puede ser notable. Como se ha comentado al comienzo, se han utilizado diferentes dispositivos duales y se realizaron en ellos las medidas pertinentes utilizando las diferentes normativas y el procedimiento indicado en cada una de ellas. Para observar las diferencias concretas que pudieran existir al utilizar las diferentes normativas, las medidas se han realizado en todas las bandas de funcionamiento del dispositivo y para cada una de ellas se han aplicado las diferentes normativas. Con esto se pretende evaluar si pudiera existir alguna discrepancia en los dispositivos que tienen el certificado de conformidad para una norma concreta cuando se utiliza en otra banda que no es exactamente la banda de utilización de esa norma. En resumen, se quería comprobar que un dispositivo que está certificado con la norma de una región, por ejemplo Europa (900 y 1800 MHz), también cumple si se utiliza en otra región, por ejemplo América (850 y 1900 MHz). La realización práctica del presente PFG se ha hecho en las instalaciones del Laboratorio de Radiofrecuencia de la Secretaría de Estado de Telecomunicación y para la Sociedad de la Información ubicado en El Casar (Guadalajara). En concreto se utilizó el robot articulado movible DASY4 y el software para su control DASY 52.8, disponible en el “banco de medida de Campos Electromagnéticos (Sala de SAR)”. La duración estimada del presente PFG ha sido aproximadamente de cuatro meses. Para llevar a cabo el presente PFG, se dispuso de todo tipo de material y recursos puestos a disposición por el Ministerio de Industria, Turismo y Comercio en el propio laboratorio, así como de los distintos terminales móviles duales con los que se realizaron las medidas pertinentes. Como bibliografía básica se han utilizado las diferentes normas indicadas anteriormente, es decir la norma europea CENELEC (basada en la del IEC) y la americana FCC (basada en la del IEEE), así como manuales de los equipos implicados en el bando de medida de SAR: analizadores de redes, robot articulado y software de control, así como el resto de dispositivos utilizados en las medidas. ABSTRACT. The goal of this Final Degree Project is to perform a comparison of the results obtained in SAR measurements (specific absorption rate) and power using the European standards CENELEC (based on IEC Regulation) and the American FCC (based on IEEE Regulation) to different mobile dual devices. If first place it was made the study of its power and SAR features, seeing that there is shift with respect to the different standards and frequency ranges. In some cases, although they work without any problem in different bands, the difference in levels of emissions obtained in the different bands can be significant. As mentioned at the beginning, different dual devices were used and relevant measurements were taken from them using the different standards and the procedure in each one of them. To see the specific differences that may exist when using the different standards, the measurements were made in all bands of the device operation and to each one it has been applied in the different standards. This attempted to assess whether there could be some discrepancy in the devices that have the certificate of compliance to a specify standard when used in another band that is not exactly the used band of this standard. To sum up, it was required to verify that a device which is certified to the standard of a region, for example (900 and 1800 MHz), also verifies if it is used in another region, for example America (850 and 1900 MHz). The practical realization of this Final Degree Project was made in the facilities of the Radio Frequency Laboratory of the Ministry of State for Telecommunications and the Information Society located in El Casar (Guadalajara). Specifically, the movable articulated robot DASY4 was used and the control software DASY 52.8, available in the “Measure Electromagnetic Field testbench (SAR room)”. The duration of this Final Degree Project has benn about four months. To carry out the present project, all kinds of materials and resources were provided by the Ministry of Industry, Tourism and Trade in its own laboratory, as well as the different mobile dual terminals with which relevant measurements were made. As basic references the different standards indicated above has been used, that is to say the European standard CENELEC (based on IEC standard) and the American FCC (based on IEEE standard), as well as the equipment manuals involved in the SAR measure testbench: network analyzers, articulated robot and control software, as well as the rest of the devices used in the measurements.
Resumo:
EPICS (Experimental Physics and Industrial Control System) lies in a set of software tools and applications which provide a software infrastructure for building distributed data acquisition and control systems. Currently there is an increase in use of such systems in large Physics experiments like ITER, ESS, and FREIA. In these experiments, advanced data acquisition systems using FPGA-based technology like FlexRIO are more frequently been used. The particular case of ITER (International Thermonuclear Experimental Reactor), the instrumentation and control system is supported by CCS (CODAC Core System), based on RHEL (Red Hat Enterprise Linux) operating system, and by the plant design specifications in which every CCS element is defined either hardware, firmware or software. In this degree final project the methodology proposed in Implementation of Intelligent Data Acquisition Systems for Fusion Experiments using EPICS and FlexRIO Technology Sanz et al. [1] is used. The final objective is to provide a document describing the fulfilled process and the source code of the data acquisition system accomplished. The use of the proposed methodology leads to have two diferent stages. The first one consists of the hardware modelling with graphic design tools like LabVIEWFPGA which later will be implemented in the FlexRIO device. In the next stage the design cycle is completed creating an EPICS controller that manages the device using a generic device support layer named NDS (Nominal Device Support). This layer integrates the data acquisition system developed into CCS (Control, data access and communication Core System) as an EPICS interface to the system. The use of FlexRIO technology drives the use of LabVIEW and LabVIEW FPGA respectively. RESUMEN. EPICS (Experimental Physics and Industrial Control System) es un conjunto de herramientas software utilizadas para el desarrollo e implementación de sistemas de adquisición de datos y control distribuidos. Cada vez es más utilizado para entornos de experimentación física a gran escala como ITER, ESS y FREIA entre otros. En estos experimentos se están empezando a utilizar sistemas de adquisición de datos avanzados que usan tecnología basada en FPGA como FlexRIO. En el caso particular de ITER, el sistema de instrumentación y control adoptado se basa en el uso de la herramienta CCS (CODAC Core System) basado en el sistema operativo RHEL (Red Hat) y en las especificaciones del diseño del sistema de planta, en la cual define todos los elementos integrantes del CCS, tanto software como firmware y hardware. En este proyecto utiliza la metodología propuesta para la implementación de sistemas de adquisición de datos inteligente basada en EPICS y FlexRIO. Se desea generar una serie de ejemplos que cubran dicho ciclo de diseño completo y que serían propuestos como casos de uso de dichas tecnologías. Se proporcionará un documento en el que se describa el trabajo realizado así como el código fuente del sistema de adquisición. La metodología adoptada consta de dos etapas diferenciadas. En la primera de ellas se modela el hardware y se sintetiza en el dispositivo FlexRIO utilizando LabVIEW FPGA. Posteriormente se completa el ciclo de diseño creando un controlador EPICS que maneja cada dispositivo creado utilizando una capa software genérica de manejo de dispositivos que se denomina NDS (Nominal Device Support). Esta capa integra la solución en CCS realizando la interfaz con la capa EPICS del sistema. El uso de la tecnología FlexRIO conlleva el uso del lenguaje de programación y descripción hardware LabVIEW y LabVIEW FPGA respectivamente.
Resumo:
El análisis de imágenes hiperespectrales permite obtener información con una gran resolución espectral: cientos de bandas repartidas desde el espectro infrarrojo hasta el ultravioleta. El uso de dichas imágenes está teniendo un gran impacto en el campo de la medicina y, en concreto, destaca su utilización en la detección de distintos tipos de cáncer. Dentro de este campo, uno de los principales problemas que existen actualmente es el análisis de dichas imágenes en tiempo real ya que, debido al gran volumen de datos que componen estas imágenes, la capacidad de cómputo requerida es muy elevada. Una de las principales líneas de investigación acerca de la reducción de dicho tiempo de procesado se basa en la idea de repartir su análisis en diversos núcleos trabajando en paralelo. En relación a esta línea de investigación, en el presente trabajo se desarrolla una librería para el lenguaje RVC – CAL – lenguaje que está especialmente pensado para aplicaciones multimedia y que permite realizar la paralelización de una manera intuitiva – donde se recogen las funciones necesarias para implementar dos de las cuatro fases propias del procesado espectral: reducción dimensional y extracción de endmembers. Cabe mencionar que este trabajo se complementa con el realizado por Raquel Lazcano en su Proyecto Fin de Grado, donde se desarrollan las funciones necesarias para completar las otras dos fases necesarias en la cadena de desmezclado. En concreto, este trabajo se encuentra dividido en varias partes. La primera de ellas expone razonadamente los motivos que han llevado a comenzar este Proyecto Fin de Grado y los objetivos que se pretenden conseguir con él. Tras esto, se hace un amplio estudio del estado del arte actual y, en él, se explican tanto las imágenes hiperespectrales como los medios y las plataformas que servirán para realizar la división en núcleos y detectar las distintas problemáticas con las que nos podamos encontrar al realizar dicha división. Una vez expuesta la base teórica, nos centraremos en la explicación del método seguido para componer la cadena de desmezclado y generar la librería; un punto importante en este apartado es la utilización de librerías especializadas en operaciones matriciales complejas, implementadas en C++. Tras explicar el método utilizado, se exponen los resultados obtenidos primero por etapas y, posteriormente, con la cadena de procesado completa, implementada en uno o varios núcleos. Por último, se aportan una serie de conclusiones obtenidas tras analizar los distintos algoritmos en cuanto a bondad de resultados, tiempos de procesado y consumo de recursos y se proponen una serie de posibles líneas de actuación futuras relacionadas con dichos resultados. ABSTRACT. Hyperspectral imaging allows us to collect high resolution spectral information: hundred of bands covering from infrared to ultraviolet spectrum. These images have had strong repercussions in the medical field; in particular, we must highlight its use in cancer detection. In this field, the main problem we have to deal with is the real time analysis, because these images have a great data volume and they require a high computational power. One of the main research lines that deals with this problem is related with the analysis of these images using several cores working at the same time. According to this investigation line, this document describes the development of a RVC – CAL library – this language has been widely used for working with multimedia applications and allows an optimized system parallelization –, which joins all the functions needed to implement two of the four stages of the hyperspectral imaging processing chain: dimensionality reduction and endmember extraction. This research is complemented with the research conducted by Raquel Lazcano in her Diploma Project, where she studies the other two stages of the processing chain. The document is divided in several chapters. The first of them introduces the motivation of the Diploma Project and the main objectives to achieve. After that, we study the state of the art of some technologies related with this work, like hyperspectral images and the software and hardware that we will use to parallelize the system and to analyze its performance. Once we have exposed the theoretical bases, we will explain the followed methodology to compose the processing chain and to generate the library; one of the most important issues in this chapter is the use of some C++ libraries specialized in complex matrix operations. At this point, we will expose the results obtained in the individual stage analysis and then, the results of the full processing chain implemented in one or several cores. Finally, we will extract some conclusions related with algorithm behavior, time processing and system performance. In the same way, we propose some future research lines according to the results obtained in this document
Resumo:
Este documento contiene el proceso de prediseño y cálculo de un satélite de observación terrestre mediante imágenes fotográficas. El principal objetivo del proyecto es el diseño detallado del subsistema de potencia del satélite y a validación de un modelo de funcionamiento del sistema de potencia de las placas solares que alimentan al mismo y mediante la herramienta Simulink. La primera parte consiste en un diseño breve de los subsistemas y parámetros más importantes del satélite tales como el Sistema de Control de Actitud, Sistema de Control Térmico y Sistema de Comunicaciones, además de la estructura del satélite, la órbita en la que se encontrará, el lanzador que se usará para situarlo en órbita y la cámara que llevara a bordo para la captación de imágenes. La segunda parte trata del diseño del subsistema de potencia de una manera más detallada y de su simulación mediante una herramienta diseñada en el programa MATLAB con la herramienta Simulink. Se pretende usar la herramienta para simular el comportamiento del subsistema de potencia de un satélite conocido que será el UPMSat-2.
Resumo:
Este proyecto consiste en el estudio y dimensionado inicial del sistema de potencia de un satélite de observación, que sirva de ayuda a otros sistemas de mayor precisión a la hora de detectar posibles terremotos y actividad volcánica mediante el análisis de señales electromagnéticas presentes en la ionosfera. Para ello el satélite incorpora, entre otros elementos sensores eléctricos, un analizador de plasma, y un detector de partículas. Con esta instrumentación se pretenden detectar los cambios que se producen en el campo electromagnético terrestre como consecuencia del movimiento de las placas tectónicas, y descubrir así las posibles anomalías que preceden a un seísmo. Para no sobrepasar el presupuesto con el que se ha ideado el proyecto se utilizarán sistemas que permitan la lectura de datos de la forma más simple, pudiendo ocurrir que los datos recogidos no se transmitan al control de Tierra en tiempo real, impidiendo a los científicos analizar los datos recogidos hasta unos días después, de ahí que este satélite experimental deba emplearse, en principio, como apoyo a programas de detención de terremotos más sofisticados y con mayores medios técnicos. Evidentemente, con este sistema también se podrán recoger datos tras los seísmos y examinarlos posteriormente. La órbita del satélite será una órbita LEO (Low Earth Orbit) de una altitud aproximada de 670 Km, estimándose el tiempo de vida del satélite en 5 años. Intentando emplear la mayor parte de los recursos económicos en el equipamiento científico, la estructura será la más simple posible, esto es, un paralelepípedo de dimensiones compactas con un peso aproximado de 185 kg, contando con paneles solares desplegables y en su interior con baterías que proporcionarán potencia al satélite durante la fase de lanzamiento y en momentos concretos.
Resumo:
Las principal conclusión que se puede obtener tras el estudio es que el satélite, tal y como se ha tenido en cuenta, es perfectamente funcional desde el punto de vista eléctrico. Por la parte de la generación de potencia, los paneles son capaces de ofreces una cantidad tal como para que aproximadamente la mitad (en el caso de funcionamiento normal) de esta potencia sea destinada a la carga útil. Además, incluso en los modos de fallo definidos, el valor de potencia dedicada a la carga útil, es suficientemente alta como para que merezca la pena mantener el satélite operativo. Respecto de las baterías, se puede observar por su comportamiento que están, sobredimensionadas y por ello actúan como un elemento regulador del sistema completo, ya que tiene un amplio margen de trabajo por el cual se puede modificar el funcionamiento general. Y esto se demuestra no sólo en cuanto al estado de carga, que para el perfil de consumo constante y el de cuatro pulsos de 120 W por día se mantiene siempre por encima del 99%, si no también en términos de charging rate, el cual se está siempre dentro de los límites establecidos por el fabricante, asegurando una vida operativa acorde con la nominal. Por último, sobre el propio método de simulación se puede extraer que aun no siendo la mejor plataforma donde estudiar estos comportamientos. Presenta el inconveniente de que, en ciertas partes, restringe la flexibilidad a la hora de cambiar múltiples condiciones al mismo tiempo, pero a cambio permite un estudio bastante amplio con un requisito de conocimientos y de complejidad bajo, de manera que habilita a cualquier estudiante a llevar a cabo estudios similares.
Resumo:
Las imágenes hiperespectrales permiten extraer información con una gran resolución espectral, que se suele extender desde el espectro ultravioleta hasta el infrarrojo. Aunque esta tecnología fue aplicada inicialmente a la observación de la superficie terrestre, esta característica ha hecho que, en los últimos años, la aplicación de estas imágenes se haya expandido a otros campos, como la medicina y, en concreto, la detección del cáncer. Sin embargo, este nuevo ámbito de aplicación ha generado nuevas necesidades, como la del procesado de las imágenes en tiempo real. Debido, precisamente, a la gran resolución espectral, estas imágenes requieren una elevada capacidad computacional para ser procesadas, lo que imposibilita la consecución de este objetivo con las técnicas tradicionales de procesado. En este sentido, una de las principales líneas de investigación persigue el objetivo del tiempo real mediante la paralelización del procesamiento, dividiendo esta carga computacional en varios núcleos que trabajen simultáneamente. A este respecto, en el presente documento se describe el desarrollo de una librería de procesado hiperespectral para el lenguaje RVC - CAL, que está específicamente pensado para el desarrollo de aplicaciones multimedia y proporciona las herramientas necesarias para paralelizar las aplicaciones. En concreto, en este Proyecto Fin de Grado se han desarrollado las funciones necesarias para implementar dos de las cuatro fases de la cadena de análisis de una imagen hiperespectral - en concreto, las fases de estimación del número de endmembers y de la estimación de la distribución de los mismos en la imagen -; conviene destacar que este trabajo se complementa con el realizado por Daniel Madroñal en su Proyecto Fin de Grado, donde desarrolla las funciones necesarias para completar las otras dos fases de la cadena. El presente documento sigue la estructura clásica de un trabajo de investigación, exponiendo, en primer lugar, las motivaciones que han cimentado este Proyecto Fin de Grado y los objetivos que se esperan alcanzar con él. A continuación, se realiza un amplio análisis del estado del arte de las tecnologías necesarias para su desarrollo, explicando, por un lado, las imágenes hiperespectrales y, por otro, todos los recursos hardware y software necesarios para la implementación de la librería. De esta forma, se proporcionarán todos los conceptos técnicos necesarios para el correcto seguimiento de este documento. Tras ello, se detallará la metodología seguida para la generación de la mencionada librería, así como el proceso de implementación de una cadena completa de procesado de imágenes hiperespectrales que permita la evaluación tanto de la bondad de la librería como del tiempo necesario para analizar una imagen hiperespectral completa. Una vez expuesta la metodología utilizada, se analizarán en detalle los resultados obtenidos en las pruebas realizadas; en primer lugar, se explicarán los resultados individuales extraídos del análisis de las dos etapas implementadas y, posteriormente, se discutirán los arrojados por el análisis de la ejecución de la cadena completa, tanto en uno como en varios núcleos. Por último, como resultado de este estudio se extraen una serie de conclusiones, que engloban aspectos como bondad de resultados, tiempos de ejecución y consumo de recursos; asimismo, se proponen una serie de líneas futuras de actuación con las que se podría continuar y complementar la investigación desarrollada en este documento. ABSTRACT. Hyperspectral imaging collects information from across the electromagnetic spectrum, covering a wide range of wavelengths. Although this technology was initially developed for remote sensing and earth observation, its multiple advantages - such as high spectral resolution - led to its application in other fields, as cancer detection. However, this new field has shown specific requirements; for example, it needs to accomplish strong time specifications, since all the potential applications - like surgical guidance or in vivo tumor detection - imply real-time requisites. Achieving this time requirements is a great challenge, as hyperspectral images generate extremely high volumes of data to process. For that reason, some new research lines are studying new processing techniques, and the most relevant ones are related to system parallelization: in order to reduce the computational load, this solution executes image analysis in several processors simultaneously; in that way, this computational load is divided among the different cores, and real-time specifications can be accomplished. This document describes the construction of a new hyperspectral processing library for RVC - CAL language, which is specifically designed for multimedia applications and allows multithreading compilation and system parallelization. This Diploma Project develops the required library functions to implement two of the four stages of the hyperspectral imaging processing chain - endmember and abundance estimations -. The two other stages - dimensionality reduction and endmember extraction - are studied in the Diploma Project of Daniel Madroñal, which complements the research work described in this document. The document follows the classical structure of a research work. Firstly, it introduces the motivations that have inspired this Diploma Project and the main objectives to achieve. After that, it thoroughly studies the state of the art of the technologies related to the development of the library. The state of the art contains all the concepts needed to understand the contents of this research work, like the definition and applications of hyperspectral imaging and the typical processing chain. Thirdly, it explains the methodology of the library implementation, as well as the construction of a complete processing chain in RVC - CAL applying the mentioned library. This chain will test both the correct behavior of the library and the time requirements for the complete analysis of one hyperspectral image, either executing the chain in one processor or in several ones. Afterwards, the collected results will be carefully analyzed: first of all, individual results -from endmember and abundance estimations stages - will be discussed and, after that, complete results will be studied; this results will be obtained from the complete processing chain, so they will analyze the effects of multithreading and system parallelization on the mentioned processing chain. Finally, as a result of this discussion, some conclusions will be gathered regarding some relevant aspects, such as algorithm behavior, execution times and processing performance. Likewise, this document will conclude with the proposal of some future research lines that could continue the research work described in this document.