1000 resultados para Piezoelectric spectroscopy
Resumo:
Photodissociation of p-bromotoluene at 266 nm has been investigated on the universal crossed molecular beam machine, and translational energy distribution P(E-t) as well as the anisotropy parameter beta have been obtained. Photofragment translational energy distribution P(E-t) reveals that similar to 38.5% of the available energy is partitioned into translational energy. The anisotropy parameter beta is determined to be -0.4 +/- 0.2. From P(E-t) and beta, we deduce that p-bromotoluene photodissociation is a fast process and the perpendicular transition plays a central role at this wavelength. The possible mechanism has been discussed and comparison of p-bromotoluene with bromobenzene, o-bromotoluene has also been made. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
The photofragmentation of C6H5I at 266 nn is investigated on the universal crossed molecular beam ma chine, and the translational spectroscopy as well as the angular distribution of I atom is measured. The results reveal that under the laser intensity of 10(R) W/cm(2) the single-photon dissociation competes with multi-photon processes. In single-photon dissociation the anisotropy parameter beta is 0.4 and the average translational energy is only 1.04 kcal/mol, which indicates that this process is a slow predissociation. In two-photon photofragmentation the average translational energy is 51.64 kcal/mol, which accounts for about 35% of the available energy. Another photofragmentation channel is even more faster, whose peak in time-of-flight spectra corresponds to four or five photon absorptions. The branching ratio of these three channels is determined to he about 3:3:4.
Resumo:
Silicalite-I, ZSM-5, and Fe-ZSM-5 zeolites prepared from two different silicon sources are characterized by UV resonance Raman (UVRR) spectroscopy, X-ray diffraction (XRD), electron spin resonance (ESR), and UV/visible diffuse reflectance spectroscopy (UV/Vis DRS). A new technique for investigating zeolitic structure, UV resonance Raman spectroscopy selectively enhances the Raman bands associated with framework iron atoms incorporated into MFI-type zeolites, and it is very sensitive in identifying the iron atoms in the framework of zeolites, while other techniques such as XRD, ESR, and UV/Vis DRS have failed in uncovering trace amounts of iron atoms in the framework of zeolites. (C) 2000 Academic Press.