992 resultados para Pesticide application
Resumo:
Following the recent work of the authors in development and numerical verification of a new kinematic approach of the limit analysis for surface footings on non-associative materials, a practical procedure is proposed to utilize the theory. It is known that both the peak friction angle and dilation angle depend on the sand density as well as the stress level, which was not the concern of the former work. In the current work, a practical procedure is established to provide a better estimate of the bearing capacity of surface footings on sand which is often non-associative. This practical procedure is based on the results obtained theoretically and requires the density index and the critical state friction angle of the sand. The proposed practical procedure is a simple iterative computational procedure which relates the density index of the sand, stress level, dilation angle, peak friction angle and eventually the bearing capacity. The procedure is described and verified among available footing load test data.
Resumo:
Single scan longitudinal relaxation measurement experiments enable rapid estimation of the spin-lattice relaxation time (T-1) as the time series of spin relaxation is encoded spatially in the sample at different slices resulting in an order of magnitude saving in time. We consider here a single scan inversion recovery pulse sequence that incorporates a gradient echo sequence. The proposed pulse sequence provides spectra with significantly enhanced signal to noise ratio leading to an accurate estimation of T-1 values. The method is applicable for measuring a range of T-1 values, thus indicating the possibility of routine use of the method for several systems. A comparative study of different single scan methods currently available is presented, and the advantage of the proposed sequence is highlighted. The possibility of the use of the method for the study of cross-correlation effects for the case of fluorine in a single shot is also demonstrated. Copyright (C) 2015 John Wiley & Sons, Ltd.