996 resultados para Payment Networks
Resumo:
In a multi-target complex network, the links (L-ij) represent the interactions between the drug (d(i)) and the target (t(j)), characterized by different experimental measures (K-i, K-m, IC50, etc.) obtained in pharmacological assays under diverse boundary conditions (c(j)). In this work, we handle Shannon entropy measures for developing a model encompassing a multi-target network of neuroprotective/neurotoxic compounds reported in the CHEMBL database. The model predicts correctly >8300 experimental outcomes with Accuracy, Specificity, and Sensitivity above 80%-90% on training and external validation series. Indeed, the model can calculate different outcomes for >30 experimental measures in >400 different experimental protocolsin relation with >150 molecular and cellular targets on 11 different organisms (including human). Hereafter, we reported by the first time the synthesis, characterization, and experimental assays of a new series of chiral 1,2-rasagiline carbamate derivatives not reported in previous works. The experimental tests included: (1) assay in absence of neurotoxic agents; (2) in the presence of glutamate; and (3) in the presence of H2O2. Lastly, we used the new Assessing Links with Moving Averages (ALMA)-entropy model to predict possible outcomes for the new compounds in a high number of pharmacological tests not carried out experimentally.
Resumo:
We develop and test a method to estimate relative abundance from catch and effort data using neural networks. Most stock assessment models use time series of relative abundance as their major source of information on abundance levels. These time series of relative abundance are frequently derived from catch-per-unit-of-effort (CPUE) data, using general linearized models (GLMs). GLMs are used to attempt to remove variation in CPUE that is not related to the abundance of the population. However, GLMs are restricted in the types of relationships between the CPUE and the explanatory variables. An alternative approach is to use structural models based on scientific understanding to develop complex non-linear relationships between CPUE and the explanatory variables. Unfortunately, the scientific understanding required to develop these models may not be available. In contrast to structural models, neural networks uses the data to estimate the structure of the non-linear relationship between CPUE and the explanatory variables. Therefore neural networks may provide a better alternative when the structure of the relationship is uncertain. We use simulated data based on a habitat based-method to test the neural network approach and to compare it to the GLM approach. Cross validation and simulation tests show that the neural network performed better than nominal effort and the GLM approach. However, the improvement over GLMs is not substantial. We applied the neural network model to CPUE data for bigeye tuna (Thunnus obesus) in the Pacific Ocean.
Resumo:
[ES]El objetivo de este trabajo es el diseño e implementación de un complemento adicional a OpenFlow que permita la ejecución de los mensajes en el switch dentro de un espacio de tiempo concreto que previamente ha sido definido. El primer paso será la definición de objetivos y especificaciones del trabajo, para posteriormente realizar el diseño de un escenario mediante el análisis de posibles alternativas, y que permitirá la consecución de dichos objetivos. A continuación se añadirá el código necesario para que los equipos sean capaces de realizar el envío y ejecución de los mensajes en el tiempo programado y se finalizará realizando simulaciones y pruebas tanto del funcionamiento como del formato que utilizan los mensajes intercambiados entre el controlador y los switches que maneja, con el objetivo de verificar la viabilidad del módulo desarrollado.