1000 resultados para Parietal Bone
Resumo:
We aimed at evaluating the relationship of lean and fat mass to bone mass in osteoporotic postmenopausal women. We invited 65 women who were being treated at the Sao Paulo Hospital osteoporosis outpatients` clinic to participate. Body composition and bone mineral density (BMD) measurements were performed using Dual-energy X-ray absorptiometry methodology (DXA). The mean age and weight were 69.7 +/- 6.4 years and 56.3 +/- 7.6 kg, respectively. Accordingly to the body mass index (BMI), 52.8% were of normal weight and 47.1% of the patients were overweight. Overweight women had significantly higher bone mass. Similarly, skeletal muscle index (SMI) showed a positive effect on BMD measurements and women with sarcopenia had significantly lower BMD measurements in total femur and femoral neck. In multiple regression analysis only lean mass and age, after adjustments to fat mass and BMI, were able to predict total body bone mineral content (BMC) (R(2) = 28%). Also lean mass adjusted to age and BMI were able to predict femoral neck BMD (R(2) = 14%). On the other hand, none of the components of the body composition (lean mass or fat mass) contributed significantly to explaining total femur BMD and neither body composition measurements were associated with spine BMD. These findings suggest that lean mass has a relevant role in BMC and BMD measurements. In addition, lower BMI and lean mass loss (sarcopenia) is associated to lower BMC and BMD of femoral neck and total femur and possible higher risk of osteoporotic fracture. (C) 2010 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Previous studies showed that intercellular communication by gap junctions has a role in bone formation. The main connexin involved in the development, differentiation, and regulation of bone tissue is connexin (Cx) 43. In addition, Cx46 is also expressed, mostly localized within the trans-Golgi region. Alterations in the expression pattern and aberrant location of these connexins are associated with oncogenesis, demonstrating a deficient gap junctional intercellular communication (GJIC) capacity in neoplastic tissues. In this study, we evaluated normal and neoplastic bone tissues regarding the expression of Cx43 and Cx46 by immunofluorescence, gene expression of these connexins by real-time PCR, and their correlation with cell proliferation index and deposition of collagen. Fourteen neoplastic bone lesions, including 13 osteosarcomas and I multilobular tumor of bone, were studied. The mRNA levels of Cx43 were similar between normal and neoplastic bone tissue. In normal bone tissue, the Cx43 protein was found mainly in the intercellular membranes. However, in all bone tumors studied here, the Cx43 was present in both cell membranes and also aberrantly in the cytoplasm. Regarding only tumor samples, we determined a possible inverse correlation between Cx43 expression and cellular proliferation, although a positive correlation between Cx43 expression and collagen deposition was also noted. In contrast, Cx46 had lower levels of expression in neoplastic bone tissues when compared with normal bone and was found retained in the perinuclear region. Even though there are differences between these two connexins regarding expression in neoplastic versus normal tissues, we concluded that there are differences regarding the subcellular location of these connexins in normal and neoplastic dog bone tissues and suggest a possible correlation between these findings and some aspects of cellular proliferation and possibly differentiation.
Resumo:
Background: The aim of the present study is to evaluate the use of anorganic bovine bone (ABB) associated with a collagen membrane (CM) for a sinus graft by means of clinical, histologic, and radiographic parameters in cases with bone availability <= 7 mm. A preliminary evaluation consisted of a clinical examination, computed tomography (CT), and a panoramic x-ray. Methods: Ninety-two patients requiring bilateral sinus grafts and 222 requiring unilateral procedures (total: 406 sinuses) participated in this study. A total of 1,025 implants were placed in the grafted sinuses. A total of 118 implants were placed simultaneously with the sinus graft (one stage), and 907 implants were placed in a subsequent surgery (two stages), 6 to 12 months after the graft was performed. In seven cases, a biopsy was harvested for histomorphometric analysis. Recall appointments were scheduled every 6 months, and panoramic and periapical x-rays were required every year for 3 years. Results: Among 1,025 implants, 19 were lost (survival rate: 98.1%). The difference in survival rates for implants placed in native bone: <= 3 mm (98.1%), >3 to <= 5 mm (98.6%), and >5 to <= 7 mm (97.0%) was not statistically significant (P = 0.3408). The survival rates for implants with rough and machined surfaces (98.6% and 97.0%, respectively) were not statistically significant (P = 0.0840). The histomorphometric analysis showed new bone formation (39.0% +/- 12%), marrow space (52.9% +/- 9.3%), and residual ABB (8% +/- 2.7%). Conclusion: Our results indicated that 1,025 implants placed in sinuses grafted exclusively with ABB combined with CM led to an excellent and predictable survival rate of 98.1%. J Periodontol 2009;80:1920-1927.
Resumo:
Progressive renal failure continues to be a challenge. The use of bone marrow cells represents a means of meeting that challenge. We used lineage-negative (Lin(-)) cells to test the hypothesis that Lin(-) cell treatment decreases renal injury. Syngeneic Fischer 344 rats were divided into four groups: sham ( laparotomy only, untreated); Nx (five-sixth nephrectomy and untreated); NxLC1 (five-sixth nephrectomy and receiving 2 x 10(6) Lin(-) cells on postnephrectomy day 15); and NxLC3 (five-sixth nephrectomy and receiving 2 x 10(6) Lin(-) cells on postnephrectomy days 15, 30, and 45). On postoperative day 16, renal mRNA expression of interleukin (IL)-1 beta, tumor necrosis factor-alpha, and IL-6 was lower in NxLC rats than in Nx rats. On postnephrectomy day 60, NxLC rats presented less proteinuria, glomerulosclerosis, anemia, renal infiltration of immune cells, and protein expression of monocyte chemoattractant protein-1, as well as decreased interstitial area. Immunostaining for proliferating cell nuclear antigen showed that, in comparison with sham rats, Nx rats presented greater cell proliferation, whereas NxLC1 rats and NxLC3 rats presented less cell proliferation than did Nx rats. Protein expression of the cyclin-dependent kinase inhibitor p21 and of vascular endothelial growth factor increased after nephrectomy and decreased after Lin(-) cell treatment. On postnephrectomy day 120, renal function (inulin clearance) was significantly better in Lin(-) cell-treated rats than in untreated rats. Lin(-) cell treatment significantly improved survival. These data suggest that Lin(-) cell treatment protects against chronic renal failure. STEM CELLS 2009; 27: 682-692
Resumo:
Purpose: The purpose of this study was to evaluate the bone healing kinetics around commercially pure titanium implants following inferior alveolar nerve (IAN) lateralization in a rabbit model. Materials and Methods: Inferior alveolar nerve lateralization was performed in 16 adult female rabbits (Oryctolagus cuniculus). During the nerve lateralization procedure, 1 implant was placed through the mandibular canal, and the IAN was replaced in direct contact with the implant. During the 8-week healing period, various bone labels were administered for fluorescent microscopy analysis. The animals were euthanized by anesthesia overdose, and the mandibular blocks were exposed by sharp dissection. Nondecalcified samples were prepared for optical light and scanning electron microscopy (SEM) evaluation. Results: SEM evaluation showed bone modeling/remodeling between the IAN and implant surface. Fluorochrome area fraction labeling at different times during the healing period showed that bone apposition mainly occurred during the first 2 weeks after implantation. Conclusions: The results obtained showed that bone healing/deposition occurred between the alveolar nerves in contact with a commercially pure titanium implant. No interaction between the nerve and the implant was detected after the 8-week healing period. Appositional bone healing occurred around the nerve bundle structure, restoring the mandibular canal integrity and morphology.
Resumo:
Background: This study evaluated the effects of diclofenac sodium and meloxicam on peri-implant bone healing. Methods: Thirty male rats were divided into three groups: the control group (CG) received no drug; the diclofenac sodium group (DSG) received 1.07 mg/kg twice a day for 5 days; and the meloxicam group (MG) received 0.2 mg/kg daily for 5 days. A screw-shaped titanium implant was placed in the tibia. Fluorochromes, oxytetracycline (OxT), calcein (CA), and alizarin (AL), were injected at 7, 14, and 21 days, respectively, after implantation, and the animals were sacrificed 28 days after implant placement. The percentages of OxT-, CA-, and AL-labeled bone as well as the percentages of bone-to-implant contact (BIC), cortical bone area (CBA), and trabecular bone area (TBA) within the implant threads were evaluated. Results: Bone healing was delayed in the DSG during the first 14 days after implant placement (OxT-labeled bone: DSG: 5.3% +/- 7.3% versus CG: 13.2% +/- 9.8%, P= 0.002, and versus MG: 14.4% +/- 13.1%, P = 0.05). The percentages of BIC (DSG: 49.6% +/- 21.9%; MG: 67.1% +/- 22.8%; and CG: 68.1% +/- 22.8%) and CBA (DSG: 63.7% +/- 21.2%; MG: 82.7% +/- 12.4%; CG: 84.9% +/- 10.6%) were lower in the DSG compared to the MG and CG (P<0.001). The percentage of TBA was significantly greater in the DSG compared to the MG and CG (DSG: 36.3% +/- 21.2% versus MG: 17.3% +/- 12.7% and versus CG: 15.1% +/- 10.6%; P<0.001). Conclusion: Diclofenac sodium seemed to delay peri-implant bone healing and to decrease BIC, whereas meloxicam had no negative effect on peri-implant bone healing.
Resumo:
Bone loss associated with cyclosporin A (CsA) therapy can result in serious morbidity to patients. Intermittent administration of 1,25 Vitamin D and calcitonin reduces osteopenia in a murine model of postmenopausal osteoporosis. The purpose of this study was to evaluate the effects of this therapeutic approach on CsA-induced alveolar bone loss in rats. Forty male Wistar rats were allocated to four experimental groups according to the treatment received during 8 weeks: (1) CsA (10 mg/kg/day, s.c.); (2) 1,25 Vitamin D (2 mu g/kg, p.o.; in weeks 1, 3, 5, and 7) plus calcitonin (2 mu g/kg, i.p.; in weeks 2, 4, 6, and 8); (3) CsA concurrently with intermittent 1,25 Vitamin D and calcitonin administration; and (4) the control treatment group (vehicle). At the end of the 8-week treatment period, serum concentrations of bone-specific alkaline phosphatase, tartrate-resistant acid phosphatase (TRAP-5b), osteocalcin, interleukin (IL)-1 beta, IL-6, and tumor necrosis factor alpha (TNF-alpha) were measured and an analysis of bone volume, bone surface, number of osteoblasts, and osteoclasts was performed. CsA administration resulted in significant alveolar bone resorption, as assessed by a lower bone volume and an increased number of osteoclasts, and increased serum bone-specific alkaline phosphatase, TRAP-5b, IL-1 beta, IL-6, and TNF-alpha concentrations. The intermittent administration of calcitriol and calcitonin prevented the CsA-induced osteopenic changes and the increased serum concentrations of TRAP-5b and inflammatory cytokines. Intermittent calcitriol/calcitonin therapy prevents CsA-induced alveolar bone loss in rats and normalizes the production of associated inflammatory mediators.
Resumo:
Background and Objective: Cyclosporine A treatment is important in the therapy of a number of medical conditions; however, alveolar bone loss is an important negative side-effect of this drug. As such, we evaluated whether concomitant administration of simvastatin would minimize cyclosporine A-associated alveolar bone loss in rats subjected, or not, to experimental periodontal disease. Material and Methods: Groups of 10 rats each were treated with cyclosporine A (10 mg/kg/day), simvastatin (20 mg/kg/day), cyclosporine A and simvastatin concurrently (cyclosporine A/simvastatin) or vehicle for 30 days. Four other groups of 10 rats each received a cotton ligature around the lower first molar and were treated similarly with cyclosporine A, simvastatin, cyclosporine A/simvastatin or vehicle. Calcium (Ca(2+)), phosphorus and alkaline phosphatase levels were evaluated in serum. Expression levels of interleukin-1 beta, prostaglandin E(2) and inducible nitric oxide synthase were evaluated in the gingivomucosal tissues. Bone volume and numbers of osteoblasts and osteoclasts were also analyzed. Results: Treatment with cyclosporine A in rats, with or without ligature, was associated with bone loss, represented by a lower bone volume and an increase in the number of osteoclasts. Treatment with cyclosporine A was associated with bone resorption, whereas simvastatin treatment improved cyclosporine A-associated alveolar bone loss in all parameters studied. In addition, simvastatin, in the presence of inflammation, can act as an anti-inflammatory agent. Conclusion: This study shows that simvastatin therapy leads to a reversal of the cyclosporine A-induced bone loss, which may be mediated by downregulation of interleukin-1 beta and prostaglandin E(2) production.
Resumo:
Background and purpose: The inflammation-resolving lipid mediator resolvin E1 (RvE1) effectively stops inflammation-induced bone loss in vivo in experimental periodontitis. It was of interest to determine whether RvE1 has direct actions on osteoclast (OC) development and bone resorption. Experimental approach: Primary OC cultures derived from mouse bone marrow were treated with RvE1 and analysed for OC differentiation, cell survival and bone substrate resorption. Receptor binding was measured using radiolabelled RvE1. Nuclear factor (NF)-kappa B activation and Akt phosphorylation were determined with western blotting. Lipid mediator production was assessed with liquid chromatography tandem mass spectrometry. Key results: OC growth and resorption pit formation were markedly decreased in the presence of RvE1. OC differentiation was inhibited by RvE1 as demonstrated by decreased number of multinuclear OC, a delay in the time course of OC development and attenuation of receptor activator of NF-kappa B ligand-induced nuclear translocation of the p50 subunit of NF-kappa B. OC survival and apoptosis were not altered by RvE1. Messenger RNA for both receptors of RvE1, ChemR23 and BLT(1) is expressed in OC cultures. Leukotriene B(4) (LTB(4)) competed with [(3)H] RvE1 binding on OC cell membrane preparations, and the LTB(4) antagonist U75302 prevented RvE1 inhibition of OC growth, indicating that BLT(1) mediates RvE1 actions on OC. Primary OC synthesized the RvE1 precursor 18R-hydroxy-eicosapentaenoic acid and LTB(4). Co-incubation of OC with peripheral blood neutrophils resulted in transcellular RvE1 biosynthesis. Conclusions and implications: These results indicate that RvE1 inhibits OC growth and bone resorption by interfering with OC differentiation. The bone-sparing actions of RvE1 are in addition to inflammation resolution, a direct action in bone remodelling.
Resumo:
Spleen or spleen plus bone marrow cells from (BALB/c x C57Bl/6)F1 donors were transferred into BALB/c recipients 21 days before skin or cardiac transplantation. Prolonged graft survival was observed on recipients treated with the mixture of donor-derived cells as compared to those treated with spleen cells alone. We evaluated the expression of CD45RB and CD44 by splenic CD4(+) and CD8(+) T cells 7 and 21 days after donor cell transfer. The populations of CD8(+)CD45RB(low) and CD8(+)CD44(high) cells were significantly decreased in mice pre-treated with donor spleen and bone marrow cells as compared to animals treated with spleen cells only, although these cells expanded in both groups when compared to an earlier time-point. No differences were observed regarding CD4+ T cell population when recipients of donor-derived cells were compared. An enhanced production of IL-10 was observed seven days after transplantation in the supernatants of spleen cell cultures of mice treated with spleen and bone marrow cells. Taken together these data suggest that donor-derived bone marrow cells modulate the sensitization of the recipient by semi-allogeneic spleen cells in part by delaying the generation of activated/memory CD8(+) T cells leading to enhanced graft survival. (c) 2007 Elsevier B.V. All rights reserved.