995 resultados para PROTEIN FILMS
Resumo:
In response to stress, the heart undergoes a pathological remodeling process associated with hypertrophy and the reexpression of a fetal gene program that ultimately causes cardiac dysfunction and heart failure. In this study, we show that A-kinase-anchoring protein (AKAP)-Lbc and the inhibitor of NF-κB kinase subunit β (IKKβ) form a transduction complex in cardiomyocytes that controls the production of proinflammatory cytokines mediating cardiomyocyte hypertrophy. In particular, we can show that activation of IKKβ within the AKAP-Lbc complex promotes NF-κB-dependent production of interleukin-6 (IL-6), which in turn enhances fetal gene expression and cardiomyocyte growth. These findings provide a new mechanistic hypothesis explaining how hypertrophic signals are coordinated and conveyed to interleukin-mediated transcriptional reprogramming events in cardiomyocytes.
Resumo:
The role of intracellular free polyamine (putrescine and spermidine) pools in multiple resistance to aminoglycoside antibiotics was investigated among in vitro selected kanamycin-resistant Escherichia coli J53 mutants expressing diminished oligopeptide-binding protein (OppA) levels and/or defective ornithine decarboxylase (ODC) activity. The results suggest that diminished OppA content, but not defective ODC activity expression, increased the relative concentration of free spermidine as compared to the wild type strain. Moreover, by adding exogenous polyamines or polyamine synthesis inhibitors to cultures with different mutant strains, a direct relationship between the intracellular OppA levels and resistance to kanamycin was revealed. Collectively these results further suggest a complex relation among OppA expression, aminoglycoside resistance and polyamine metabolism.
Resumo:
A general update review of the dynamic aspect of protein metabolism is presented. The effect of excess protein level on protein metabolism has been the object of a limited number of studies in man. From the information available, it appears that the primary regulatory pathway for body protein homeostasis is the process of amino acid (protein) oxidation.
Resumo:
Abstract : The Wiskott-Aldrich Syndrome (WAS) is an X-linked recessive human primary immunodeficiency. It is caused by mutations in the gene encoding the hermatopoietic specific regulator of the actin cytoskeleton Wiskott-Aldrich Syndrome Protein (WASP). Importantly, a majority of affected patients develop autoimmunity including an inflammatory bowel disease (IBD)-like disease. WASP deficient mice share many similarities with the human WAS. One of these similarities is the spontaneous development of colitis. I have focused my dissertation studies on the pathogenesis of colitis in WASP deficient mice. Prior work from our laboratory had shown that lymphocytes were required and that CD4+ T cells sufficient for colitis development. This colitis was associated with a predominant Th2-cytokine skewing. I have contributed in exploring whether the Th2 cytokine IL-4 plays a role in disease maintenance. Using two approaches to neutralize IL-4, we found that this cytokine plays a role in disease maintenance. Natural CD4*CD25*Foxp3* regulatory T cells (nTreg cells) have been implicated in the pathogenesis of several autoimmune disorders. We found that WASP deficient mice have reduced nTreg cell numbers in peripheral lymphoid organs. This was associated with functional defects in suppressing T cell proliferation and preventing colitis induced by transfer of naïve T cells into SCID recipient, which lack lymphocytes. WASP deficiency affected homing of nTreg cells to lymphoid compartments, IL-2-mediated activation and secretion of the immunomodulatory cytokine IL-10. Finally, we could prevent colitis onset via adoptive transfer of WT nTreg cells prior to colitis development. This suggests that nTreg cells dysfunction is one of the mechanisms underlying colitis development in WASP deficient mice. Future directions will aim at deciphering the role of other immune cell types, the bacterial flora, and various cytokines in colitis development in this murine model of colitis. In addition, we believe that colitis in WASP deficient mice could serve as a useful tool to evaluate nTreg cells manipulation as novel therapeutic approach for IBD.
Resumo:
Calcium-dependent protein kinases (CDPKs) are serine/threonine kinases that react in response to calcium which functions as a trigger for several mechanisms in plants and invertebrates, but not in mammals. Recent structural studies have defined the role of calcium in the activation of CDPKs and have elucidated the important structural changes caused by calcium in order to allow the kinase domain of CDPK to bind and phosphorylate the substrate. However, the role of autophosphorylation in CDPKs is still not fully understood. In Plasmodium falciparum, seven CDPKs have been identified by sequence comparison, and four of them have been characterized and assigned to play a role in parasite motility, gametogenesis and egress from red blood cells. Although PfCDPK2 was already discovered in 1997, little is known about this enzyme and its metabolic role. In this work, we have expressed and purified PfCDPK2 at high purity in its unphosphorylated form and characterized its biochemical properties. Moreover, propositions about putative substrates in P. falciparum are made based on the analysis of the phosphorylation sites on the artificial substrate myelin basic protein (MBP).