1000 resultados para Overburden Pressure
Resumo:
Evidence has accumulated in recent years that suggests that nitrate from the diet, particularly vegetables, is capable of producing bioactive NO in the vasculature, following bioconversion to nitrite by oral bacteria. The aim of the present review was to consider the current body of evidence for potential beneficial effects of dietary nitrate on blood pressure and endothelial function, with emphasis on evidence from acute and chronic human intervention studies. The studies to date suggest that dietary nitrate acutely lowers blood pressure in healthy humans. An inverse relationship was seen between dose of nitrate consumed and corresponding systolic blood pressure reduction, with doses of nitrate as low as 3 mmol of nitrate reducing systolic blood pressure by 3 mmHg. Moreover, the current studies provide some promising evidence on the beneficial effects of dietary nitrate on endothelial function. In vitro studies suggest a number of potential mechanisms by which dietary nitrate and its sequential reduction to NO may reduce blood pressure and improve endothelial function, such as: acting as a substrate for endothelial NO synthase; increasing vasodilation; inhibiting mitochondrial reactive oxygen species production and platelet aggregation. In conclusion, the evidence for beneficial effects of dietary nitrate on blood pressure and endothelial function is promising. Further long-term randomised controlled human intervention studies assessing the potential effects of dietary nitrate on blood pressure and endothelial function are needed, particularly in individuals with hypertension and at risk of CVD.
Resumo:
A plasma source, sustained by the application of a floating high voltage (±15 kV) to parallel-plate electrodes at 50 Hz, has been achieved in a helium/air mixture at atmospheric pressure (P = 105 Pa) contained in a zip-locked plastic package placed in the electrode gap. Some of the physical and antimicrobial properties of this apparatus were established with a view to ascertain its performance as a prototype for the disinfection of fresh produce. The current–voltage (I–V) and charge–voltage (Q–V) characteristics of the system were measured as a function of gap distance d, in the range (3 × 103 ≤ Pd ≤ 1.0 × 104 Pa m). The electrical measurements showed this plasma source to exhibit the characteristic behaviour of a dielectric barrier discharge in the filamentary mode and its properties could be accurately interpreted by the two-capacitance in series model. The power consumed by the discharge and the reduced field strength were found to decrease quadratically from 12.0 W to 4.5 W and linearly from 140 Td to 50 Td, respectively, in the range studied. Emission spectra of the discharge were recorded on a relative intensity scale and the dominant spectral features could be assigned to strong vibrational bands in the 2+ and 1− systems of N2 and ${\rm N}_2^+$ , respectively, with other weak signatures from the NO and OH radicals and the N+, He and O atomic species. Absolute spectral intensities were also recorded and interpreted by comparison with the non-equilibrium synthetic spectra generated by the computer code SPECAIR. At an inter-electrode gap of 0.04 m, this comparison yielded typical values for the electron, vibrational and translational (gas) temperatures of (4980 ± 100) K, (2700 ± 200) K and (300 ± 100) K, respectively and an electron density of 1.0 × 1017 m−3. A Boltzmann plot also provided a value of (3200 ± 200 K) for the vibrational temperature. The antimicrobial efficacy was assessed by studying the resistance of both Escherichia coli K12 its isogenic mutants in soxR, soxS, oxyR, rpoS and dnaK selected to identify possible cellular responses and targets related with 5 min exposure to the active gas in proximity of, but not directly in, the path of the discharge filaments. Both the parent strain and mutants populations were significantly reduced by more than 1.5 log cycles in these conditions, showing the potential of the system. Post-treatment storage studies showed that some transcription regulators and specific genes related to oxidative stress play an important role in the E. coli repair mechanism and that plasma exposure affects specific cell regulator systems.
Resumo:
This paper for the first time discuss the wind pressure distribution on the building surface immersed in wind profile of low-level jet rather than a logarithmic boundary-layer profile. Two types of building models are considered, low-rise and high-rise building, relative to the low-level jet height. CFD simulation is carried out. The simulation results show that the wind pressure distribution immersed in a low-jet wine profile is very different from the typical uniform and boundary-layer flow. For the low-rise building, the stagnation point is located at the upper level of windward façade for the low-level jet wind case, and the separation zone above the roof top is not as obvious as the uniform case. For the high-rise building model, the height of stagnation point is almost as high as the low-level jet height.
Resumo:
BACKGROUND: Low plasma 25-hydroxyvitamin D (25[OH]D) concentration is associated with high arterial blood pressure and hypertension risk, but whether this association is causal is unknown. We used a mendelian randomisation approach to test whether 25(OH)D concentration is causally associated with blood pressure and hypertension risk. METHODS: In this mendelian randomisation study, we generated an allele score (25[OH]D synthesis score) based on variants of genes that affect 25(OH)D synthesis or substrate availability (CYP2R1 and DHCR7), which we used as a proxy for 25(OH)D concentration. We meta-analysed data for up to 108 173 individuals from 35 studies in the D-CarDia collaboration to investigate associations between the allele score and blood pressure measurements. We complemented these analyses with previously published summary statistics from the International Consortium on Blood Pressure (ICBP), the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium, and the Global Blood Pressure Genetics (Global BPGen) consortium. FINDINGS: In phenotypic analyses (up to n=49 363), increased 25(OH)D concentration was associated with decreased systolic blood pressure (β per 10% increase, -0·12 mm Hg, 95% CI -0·20 to -0·04; p=0·003) and reduced odds of hypertension (odds ratio [OR] 0·98, 95% CI 0·97-0·99; p=0·0003), but not with decreased diastolic blood pressure (β per 10% increase, -0·02 mm Hg, -0·08 to 0·03; p=0·37). In meta-analyses in which we combined data from D-CarDia and the ICBP (n=146 581, after exclusion of overlapping studies), each 25(OH)D-increasing allele of the synthesis score was associated with a change of -0·10 mm Hg in systolic blood pressure (-0·21 to -0·0001; p=0·0498) and a change of -0·08 mm Hg in diastolic blood pressure (-0·15 to -0·02; p=0·01). When D-CarDia and consortia data for hypertension were meta-analysed together (n=142 255), the synthesis score was associated with a reduced odds of hypertension (OR per allele, 0·98, 0·96-0·99; p=0·001). In instrumental variable analysis, each 10% increase in genetically instrumented 25(OH)D concentration was associated with a change of -0·29 mm Hg in diastolic blood pressure (-0·52 to -0·07; p=0·01), a change of -0·37 mm Hg in systolic blood pressure (-0·73 to 0·003; p=0·052), and an 8·1% decreased odds of hypertension (OR 0·92, 0·87-0·97; p=0·002). INTERPRETATION: Increased plasma concentrations of 25(OH)D might reduce the risk of hypertension. This finding warrants further investigation in an independent, similarly powered study.
Resumo:
Epigenetic modification of the genome via cytosine methylation is a dynamic process that responds to changes in the growing environment. This modification can also be heritable. The combination of both properties means that there is the potential for the life experiences of the parental generation to modify the methylation profiles of their offspring and so potentially to ‘pre-condition’ them to better accommodate abiotic conditions encountered by their parents. We recently identified high vapor pressure deficit (vpd)-induced DNA methylation at two gene loci in the stomatal development pathway and an associated reduction in leaf stomatal frequency.1 Here, we test whether this epigenetic modification pre-conditioned parents and their offspring to the more severe water stress of periodic drought. We found that three generations of high vpd-grown plants were better able to withstand periodic drought stress over two generations. This resistance was not directly associated with de novo methylation of the target stomata genes, but was associated with the cmt3 mutant’s inability to maintain asymmetric sequence context methylation. If our finding applies widely, it could have significant implications for evolutionary biology and breeding for stressful environments.
Resumo:
Steep orography can cause noisy solutions and instability in models of the atmosphere. A new technique for modelling flow over orography is introduced which guarantees curl free gradients on arbitrary grids, implying that the pressure gradient term is not a spurious source of vorticity. This mimetic property leads to better hydrostatic balance and better energy conservation on test cases using terrain following grids. Curl-free gradients are achieved by using the co-variant components of velocity over orography rather than the usual horizontal and vertical components. In addition, gravity and acoustic waves are treated implicitly without the need for mean and perturbation variables or a hydrostatic reference profile. This enables a straightforward description of the implicit treatment of gravity waves. Results are presented of a resting atmosphere over orography and the curl-free pressure gradient formulation is advantageous. Results of gravity waves over orography are insensitive to the placement of terrain-following layers. The model with implicit gravity waves is stable in strongly stratified conditions, with N∆t up to at least 10 (where N is the Brunt-V ̈ais ̈al ̈a frequency). A warm bubble rising over orography is simulated and the curl free pressure gradient formulation gives much more accurate results for this test case than a model without this mimetic property.
Resumo:
Gum arabic is widely used in the food industry as an additive, both as a thickener and an emulsifier. This study has compared the emulsification properties of two types of gums, KLTA (Acacia senegal) and GCA (Acacia seyal), both in their native/untreated forms and after exposure to high pressure (800 MPa). Further studies were undertaken to chemically modify the disulphide linkages present and to investigate the effects of their reduction on the diffusion of the carbohydrate materials. The emulsification properties of the gum samples were examined by determining the droplet size distribution in a ‘‘model’’ oil-in-water system. Results showed that high pressure treatment and chemical reduction of gums changed the emulsification properties of both gums. The high molecular weight component in arabinogalactanproteins (AGP/GP), and more ‘‘branched’’ carbohydrates present in gum arabic, may be responsible for the emulsification properties of GCA gum, indicating that the emulsification mechanisms for KLTA and GCA were different.
Resumo:
The suggestion is discussed that characteristic particle and field signatures at the dayside magnetopause, termed “flux transfer events” (FTEs), are, in at least some cases, due to transient solar wind and/or magnetosheath dynamic pressure increases, rather than time-dependent magnetic reconnection. It is found that most individual cases of FTEs observed by a single spacecraft can, at least qualitatively, be explained by the pressure pulse model, provided a few rather unsatisfactory features of the predictions are explained in terms of measurement uncertainties. The most notable exceptions to this are some “two-regime” observations made by two satellites simultaneously, one on either side of the magnetopause. However, this configuration has not been frequently achieved for sufficient time, such observations are rare, and the relevant tests are still not conclusive. The strongest evidence that FTEs are produced by magnetic reconnection is the dependence of their occurrence on the north-south component of the interplanetary magnetic field (IMF) or of the magnetosheath field. The pressure pulse model provides an explanation for this dependence (albeit qualitative) in the case of magnetosheath FTEs, but this does not apply to magnetosphere FTEs. The only surveys of magnetosphere FTEs have not employed the simultaneous IMF, but have shown that their occurrence is strongly dependent on the north-south component of the magnetosheath field, as observed earlier/later on the same magnetopause crossing (for inbound/outbound passes, respectively). This paper employs statistics on the variability of the IMF orientation to investigate the effects of IMF changes between the times of the magnetosheath and FTE observations. It is shown that the previously published results are consistent with magnetospheric FTEs being entirely absent when the magnetosheath field is northward: all crossings with magnetosphere FTEs and a northward field can be attributed to the field changing sense while the satellite was within the magnetosphere (but close enough to the magnetopause to detect an FTE). Allowance for the IMF variability also makes the occurrence frequency of magnetosphere FTEs during southward magnetosheath fields very similar to that observed for magnetosheath FTEs. Conversely, the probability of attaining the observed occurrence frequencies for the pressure pulse model is 10−14. In addition, it is argued that some magnetosheath FTEs should, for the pressure pulse model, have been observed for northward IMF: the probability that the number is as low as actually observed is estimated to be 10−10. It is concluded that although the pressure model can be invoked to qualitatively explain a large number of individual FTE observations, the observed occurrence statistics are in gross disagreement with this model.
Resumo:
We study the causal chain of events by which variations in the solar wind dynamic pressure cause the magnetopause boundary to move and excite magnetic perturbations at the ground. The observation of large ground magnetic transients is argued to be due to the coupling of the magnetohydrodynamic compressional wave to the field-guided Alfvén wave, which carrying current, can thereby transfer momentum to the ionosphere. The study highlights the similarity of the ionospheric signatures at a single station arising from the response of the coupled magnetosphere-ionosphere system to disparate impulsive processes at the magnetopause.
Resumo:
The variability of hourly values of solar wind number density, number density variation, speed, speed variation and dynamic pressure with IMF Bz and magnitude |B| has been examined for the period 1965–1986. We wish to draw attention to a strong correlation in number density and number density fluctuation with IMF Bz characterised by a symmetric increasing trend in these quantities away from Bz = 0 nT. The fluctuation level in solar wind speed is found to be relatively independent of Bz. We infer that number density and number density variability dominate in controlling solar wind dynamic pressure and dynamic pressure variability. It is also found that dynamic pressure is correlated with each component of IMF and that there is evidence of morphological differences between the variation with each component. Finally, we examine the variation of number density, speed, dynamic pressure and fluctuation level in number density and speed with IMF magnitude |B|. Again we find that number density variation dominates over solar wind speed in controlling dynamic pressure.