996 resultados para Oscillating water column (OWC)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The phytoplankton community composition and productivity in waters of the Amundsen Sea and surrounding sea ice zone were characterized with respect to iron (Fe) input from melting glaciers. High Fe input from glaciers such as the Pine Island Glacier, and the Dotson and Crosson ice shelves resulted in dense phytoplankton blooms in surface waters of Pine Island Bay, Pine Island Polynya, and Amundsen Polynya. Phytoplankton biomass distribution was the opposite of the distribution of dissolved Fe (DFe), confirming the uptake of glacial DFe in surface waters by phytoplankton. Phytoplankton biomass in the polynyas ranged from 0.6 to 14 µg Chl a / L, with lower biomass at glacier sites where strong upwelling of Modified Circumpolar Deep Water from beneath glacier tongues was observed. Phytoplankton blooms in the polynyas were dominated by the haptophyte Phaeocystis antarctica, whereas the phytoplankton community in the sea ice zone was a mix of P. antarctica and diatoms, resembling the species distribution in the Ross Sea. Water column productivity based on photosynthesis versus irradiance characteristics averaged 3.00 g C /m**2/d in polynya sites, which was approximately twice as high as in the sea ice zone. The highest water column productivity was observed in the Pine Island Polynya, where both thermally and salinity stratified waters resulted in a shallow surface mixed layer with high phytoplankton biomass. In contrast, new production based on NO3 uptake was similar between different polynya sites, where a deeper UML in the weakly, thermally stratified Pine Island Bay resulted in deeper NO3 removal, thereby offsetting the lower productivity at the surface. These are the first in situ observations that confirm satellite observations of high phytoplankton biomass and productivity in the Amundsen Sea. Moreover, the high phytoplankton productivity as a result of glacial input of DFe is the first evidence that melting glaciers have the potential to increase phytoplankton productivity and thereby CO2 uptake, resulting in a small negative feedback to anthropogenic CO2 emissions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent rapid climate warming at the western Antarctic Peninsula (WAP) results in elevated glacial melting, enhanced sedimentary run-off, increased turbidity and impact of ice-scouring in shallow coastal areas. Discharge of mineral suspension from volcanic bedrock ablation and chronic physical disturbance is expected to influence sessile filter feeders such as the Antarctic soft shell clam Laternula elliptica ( King and Broderip, 1832). We investigated effects of sedimentary run-off on the accumulation of trace metals, and together with physical disturbance, the cumulative effect on oxidative stress parameters in younger and older L. elliptica from two stations in Potter Cove (King George Island, Antarctica) which are distinctly impacted by turbidity and ice-scouring. Fe, Mn, Sr, V and Zn concentrations were slightly higher in sediments of the station receiving more sediment run-off, but not enriched in bivalves of this station. The only element that increased in bivalves experimentally exposed to sediment suspension for 28 days was Mn. Concentration of the waste accumulation biomarker lipofuscin in nervous tissue was higher in L. elliptica from the "exposed" compared to the "less exposed" site, whereas protein carbonyl levels in bivalve mantle tissue were higher at the less sediment impacted site. Tissue metal content and lipofuscin in nervous tissue were generally higher in older compared to younger individuals from both field stations. We conclude that elevated sediment ablation does not per se result in higher metal accumulation in L. elliptica. Instead of direct absorbance from sediment particles, metal accumulation in gills seems to indicate uptake of compounds dissolved in the water column, whereas metals in digestive gland appear to originate from enriched planktonic or detritic food. Accumulation of cellular waste products and potentially reactive metals over lifetime presumably alters L. elliptica physiological performance with age and may contribute to higher stress susceptibility in older animals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A field study was conducted in Santala Bay with weekly samplings during February and March 2000. Ice thickness was 20-28 cm, snow cover 0-1 cm. The under-ice water column was stratified with a cold (-0.3 - 0.2°C) and less saline (S = 2.1-4.9) interface layer. Concentrations of particulate organic carbon (0.5-5.8 mg POC/l) and algal pigments (0.3-18.2 µg chlorophyll a/l) were higher in the ice than in the water (0.2-0.5 mg POC/l, 1.6-7.1 µg chlorophyll a/l) and peaked mostly in the bottom part of the ice. The thin ice and almost lacking snow cover had favoured an early ice-algal and phytoplankton bloom. The diversity of metazoans was low, with six species in the ice and eight species in the under-ice water. The rotifer Synchaeta cf. littoralis dominated both in ice and water, with maximum abundances of 230 individuals/l in the bottom part of the ice. Rotifer eggs were also observed in the ice. Baltic sea ice seems to be a suitable habitat for rotifers. Nauplii and copepodids of the calanoid Acartia longiremis in the under-ice water showed some herbivorous feeding (<0.1-0.23 ng gut pigment/individual), but analysis of fatty acids, fatty alcohols and biomarker ratios indicated a more omnivorous/carnivorous diet. Despite low temperatures, this copepod showed growth and development below the ice, doubling in numbers (mainly CI, CII) from 118 to 230 individuals m during the third week of March.