994 resultados para Operation Band
Resumo:
We describe experiments designed to produce a bright M-L band x-ray source in the 3-3.5 keV region. Palladium targets irradiated with a 10(15) W cm(-2) laser pulse have previously been shown to convert up to similar to 2% of the laser energy into M-L band x-rays with similar pulse duration to that of the incident laser. This x-ray emission is further characterized here, including pulse duration and source size measurements, and a higher conversion efficiency than previously achieved is demonstrated (similar to 4%) using more energetic and longer duration laser pulses (200 ps). The emission near the aluminium K-edge (1.465-1.550 keV) is also reported for similar conditions, along with the successful suppression of such lower band x-rays using a CH coating on the rear side of the target. The possibility of using the source to radiatively heat a thin aluminium foil sample to uniform warm dense matter conditions is discussed.
Resumo:
This paper presents a new variant of broadband Doherty power amplifier that employs a novel output combiner. A new parameter ∝ is introduced to permit a generalized analysis of the recently reported Parallel Doherty power amplifier (PDPA),and hence offer design flexibility. The circuit prototype of the new DPA fabricated using GaN devices exhibits maximum drain efficiency of 85% at 43-dBm peak power and 63% at 6-dB backoff power (BOP). Measured drain efficiency of >60% at peak power across 500-MHz frequency range and >50% at 6-dB BOP across 480-MHz frequency range were achieved, confirming the theoretical wideband characteristics of the new DPA.
Resumo:
Retrodirective, self-steering, antennas have the advantage of being able to automatically return a signal back in the direction along from which it originated. The tracking is real time and is carried out in the analogue domain which results in simple circuits which can be accommodated, planar-form, behind the antenna elements. The main objective of this paper is to detail the continuation of the work on L band retrodirective antennas which has the ambition of increasing the TRL such that a minimal viable product can be produced, suitable for type approval as an L band SATCOM user terminal. The focus will be the technical challenges that have arisen as the retrodirective antenna is moved up the TRL chain. Some of these aspects include the ability to track very weak modulated signals (S/N tending to 0dB), TX/RX filter and duplexer specifications, PA and LNA considerations. The resultant retrodirective architecture will be compared against typical specifications of L band satellite ground terminals, showing that the retrodirective antenna offers a simple and effective real time tracking antenna architecture.
Resumo:
Cyber-security research in the field of smart grids is often performed with a focus on either the power and control domain or the Information and Communications Technology (ICT) domain. The characteristics of the power equipment or ICT domain are commonly not collectively considered. This work provides an analysis of the physical effects of cyber-attacks on microgrids – a smart grid construct that allows continued power supply when disconnected from a main grid. Different types of microgrid operations are explained (connected, islanded and synchronous-islanding) and potential cyber-attacks and their physical effects are analyzed. A testbed that is based on physical power and ICT equipment is presented to validate the results in both the physical and ICT domain.