998 resultados para Open Kinetic Chain
Resumo:
This project involved the evaluation of several aggregates previously rated poor to excellent with respect to skid resistance and certain mix design parameters. An open graded asphalt friction course was evaluated using 4 comparably graded aggregates: quartzite, fine grained limestone, coarse limestone and lightweight expanded shale. The performance investigations involved the verification of observations of the quartzite test sections, evaluation of the effect of blending the superior quartzite with a typical coarse grained-textured limestone, and the evaluation of the limestone. The effects of traffic on the aggregates used in the test sections were studied, as well as the relationship between asphalt content levels and traffic with respect to performance. The bond of the open graded friction course mixture was also evaluated. The SN performance of all test sections after sixteen months of exposure was found to be satisfactory in that none of the material combinations had polished to the point where unacceptable SN levels developed. When material combinations were compared, significant differences were noted.
Resumo:
Microtubule-associated protein 1B is an essential protein during brain development and neurite outgrowth and was studied by several assays to further characterize actin as a major interacting partner. Tubulin and actin co-immunoprecipitated with MAP1B at similar ratios throughout development. Their identity was identified by mass spectrometry and was confirmed by Western blots. In contrast to previous reports, the MAP1B-actin interaction was not dependent on the MAP1B phosphorylation state, since actin was precipitated from brain tissue throughout development at similar ratios and equal amounts were precipitated before and after dephosphorylation with alkaline phosphatase. MAP1B heavy chain was able to bind actin directly and therefore the N-terminal part of MAP1B heavy chain must also contain an actin-binding site. The binding force of this interaction was measured by atomic force microscopy and values were in the same range as those of MAP1B binding to tubulin or that measured in MAP1B self-aggregation. Aggregation was confirmed by negative staining and electron microscopy. Experiments including COS-7 cells, PC12 cells, cytochalasin D and immunocytochemistry with subsequent confocal laser microscopy, suggested that MAP1B may bind to actin but has no obvious microfilament stabilizing effect. We conclude, that the MAP1B heavy chain has a microtubule-stabilization effect, and contains an actin-binding site that may play a role in the crosslinking of actin and microtubules, a function that may be important in neurite elongation.
Resumo:
Unassembled immunoglobulin light chains expressed by the mouse plasmacytoma cell line NS1 (KNS1) are degraded in vivo with a half-life of 50-60 min in a way that closely resembles endoplasmic reticulum (ER)-associated degradation (Knittler et al., 1995). Here we show that the peptide aldehydes MG132 and PS1 and the specific proteasome inhibitor lactacystin effectively increased the half-life of KNS1, arguing for a proteasome-mediated degradation pathway. Subcellular fractionation and protease protection assays have indicated an ER localization of KNS1 upon proteasome inhibition. This was independently confirmed by the analysis of the folding state of KNS1and size fractionation experiments showing that the immunoglobulin light chain remained bound to the ER chaperone BiP when the activity of the proteasome was blocked. Moreover, kinetic studies performed in lactacystin-treated cells revealed a time-dependent increase in the physical stability of the BiP-KNS1complex, suggesting that additional proteins are present in the older complex. Together, our data support a model for ER-associated degradation in which both the release of a soluble nonglycosylated protein from BiP and its retrotranslocation out of the ER are tightly coupled with proteasome activity.
Resumo:
The kinetics and microstructure of solid-phase crystallization under continuous heating conditions and random distribution of nuclei are analyzed. An Arrhenius temperature dependence is assumed for both nucleation and growth rates. Under these circumstances, the system has a scaling law such that the behavior of the scaled system is independent of the heating rate. Hence, the kinetics and microstructure obtained at different heating rates differ only in time and length scaling factors. Concerning the kinetics, it is shown that the extended volume evolves with time according to αex = [exp(κCt′)]m+1, where t′ is the dimensionless time. This scaled solution not only represents a significant simplification of the system description, it also provides new tools for its analysis. For instance, it has been possible to find an analytical dependence of the final average grain size on kinetic parameters. Concerning the microstructure, the existence of a length scaling factor has allowed the grain-size distribution to be numerically calculated as a function of the kinetic parameters
Resumo:
Abstract