998 resultados para Occurrences non fatales


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Study of fatigue phenomenon in composites requires a dynamic tool which can detect and identify different failure mechanisms involved. The tool should also be capable of monitoring the cumulative damage progression on-line. Acoustic Emission Technique has been utilized in the experimental investigations on unidirectional carbon fiber reinforced plastic (CFRP) composite specimens subjected to tension-tension fatigue. Amplitude as well as frequency distribution of Acoustic Emission (AE) signals have been studied to detect and characterize different failure mechanisms. For a quantitative measure of degradation of the material with fatigue load cycles, reduction in stiffness of the specimen has been measured intermittently. Ultrasonic imaging could give the information on the changes in the interior status of the material at different stages of fatigue life.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a plane stress solution for the interaction analysis of strip footing resting on (i) a non-homogeneous elastic half-plane and (ii) a non-homogeneous elastic layer resting on a rigid stratum has been presented. The analysis has been done using a combined analytical and FEM method in which the discretization of the half-plane is not required and thereby minimizes the computational efforts considerably. The contact pressure distribution and the settlement profile for the selected cases of varying modulus half-plane, which has more relevance to foundation engineering, have been given. Experimental verification through a photoelastic method of stress analysis has been carried out for the case of footing on Gibson elastic half-plane, and the contact pressure distribution thus obtained has been compared with the theoretical results. Copyright (C) 1996 Elsevier Science Ltd

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polycrystalline samples of oxides of the general formula LiM(V)M(VI)O(6) (M(V) = Nb, Ta; M(VI) = Mo, W), crystallizing in a non-centrosymmetric (space group P (4) over bar 2(1)m) trirutile structure, exhibit second harmonic generation (SHG) of 1064 nm radiation with efficiencies 15-45 times that of alpha-quartz; interestingly, the SHG response is retained by the protonated derivatives HM(V)M(VI)O(6) . xH(2)O, and their n-alkylamine intercalates as well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electron transfer reactions between donor-acceptor pairs in solution and in organized media exhibit diverse behaviour. Recent experiments have indicated an interesting breakdown of the Marcus parabolic energy gap dependence in the normal regime for back electron transfer from contact ion pairs. A novel explanation of this breakdown has recently been proposed (M. Tachiya and S. Murata, J. Am. Chem. Sec., 116(1994) 2434) which attributes the breakdown to the interplay between the relaxation in the reactant well and the reaction. A particularly interesting aspect of the model is that it envisages the electron transfer in the normal regime to take place from a completely non-equilibrium condition. In this article a time dependent solution of the model is presented for the first time, after generalizing it to include a realistic initial population distribution. The decay of the contact ion pair population is completely non-exponential. This can be used to check the validity of the Tachiya-Murata model. The dynamics of electron transfer from the solvent separated ion pair, which seem to obey the Marcus relation, is exponential.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electron transfer reactions in large molecules may often be coupled to both the polar solvent modes and the intramolecular vibrational modes of the molecule. This can give rise to a complex dynamics which may in some systems, like betaine, be controlled more by vibrational rather than by solvent effects. Additionally, a significant contribution from an ultrafast relaxation component in the solvation dynamics may enhance the complexity. To explain the wide range of behavior that has been observed experimentally, Barbara et al. recently proposed that a model of an electron transfer reaction should minimally consist of a low-frequency classical solvent mode (X), a low-frequency vibrational mode (Q), and a high-frequency quantum mode (q) (J. Phys. Chem. 1991, 96, 3728). In the present work, a theoretical study of this model is described. This study generalizes earlier work by including the biphasic solvent response and the dynamics of the low-frequency vibrational mode in the presence of a delocalized, extended reaction zone. A novel Green's function technique has been developed which allowed us to study the non-Markovian dynamics on a multidimensional surface. The contributions from the high-frequency vibrational mode and the ultrafast component in the non-Markovian solvent dynamics are found to be primarily responsible for the dramatic increase in charge transfer rate over the prediction of the classical theories that neglect both these factors. These, along with a large coupling between the reactant and the product states, may combine to render the electron transfer rate both very large and constant over a wide range of solvent relaxation rates. A study on the free energy gap dependence of the electron transfer rate reveals that the rates are sensitive to changes in the quantum frequency particularly when the free energy gap is very large.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Non-resonant microwave absorption is studied as a function of temperature and composition in superconducting YBa2Cu3O7/CuO ceramic composite samples. In pure YBa2Cu3O7 only normal field dependence of the absorption is observed, where as in composites an anomalous non-monotonic field dependence is seen. The results are explained using an extended resistively shunted junction model and invoking the occurrence of junctions with phase difference psi(0) such that pi/2 < psi(0) < 3 pi/2. Copyright (C) 1996 Elsevier Science Ltd

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a simplified and quantitative analysis of the Seebeck coefficient in degenerate bulk and quantum well materials whose conduction band electrons obey Kane's non-parabolic energy dispersion relation. We use k.p formalism to include the effect of the overlap function due to the band non-parabolicity in the Seebeck coefficient. We also address the key issues and the conditions in which the Seebeck coefficient in quantum wells should exhibit oscillatory dependency with the film thickness under the acoustic phonon and ionized impurity scattering. The effect of screening length in degenerate bulk and quantum wells has also been generalized for the determination of ionization scattering. The well-known expressions of the Seebeck coefficient in non-degenerate wide band gap materials for both bulk and quantum wells has been obtained as a special case and this provides an indirect proof of our generalized theoretical analysis.